[1]
|
Jason T. Hedetniemi, Stephen T. Hedetniemi, and Thomas M. Lewis.
Upper distance-two domination.
2015.
Under review.
|
[2]
|
Mustapha Chellali, Teresa W. Haynes, Stephen T. Hedetniemi, and Thomas M.
Lewis.
On ve-degrees and ev-degrees in graphs.
2015.
Under review.
|
[3]
|
Thomas M. Lewis.
On the hamiltonian number of a planar graph.
2014.
Under review.
[ arXiv ]
|
[4]
|
Jason T. Hedetniemi, Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Thomas M.
Lewis.
Classifying graphs by degrees.
Utilitas Mathematica, 201X.
To appear.
|
[5]
|
Byron C. Jaeger and Thomas M. Lewis.
Enumerating graph depletions.
Online J. Anal. Comb., (9):17, 2014.
[ .pdf ]
|
[6]
|
Jason T. Hedetniemi, Sandra M. Hedetniemi, Stephen T. Hedetniemi, and Thomas M.
Lewis.
Analyzing graphs by degrees.
AKCE Int. J. Graphs Comb., 10(4):359--375, 2013.
[ .pdf ]
|
[7]
|
Kevin D. Adams, Nicholas G. Foil, Thomas M. Lewis, and Alexander Rice.
A discrete fractal in Z related to Pascal's triangle modulo 2.
Monatsh. Math., 169(1):1--14, 2013.
[ DOI |
http ]
|
[8]
|
Thomas M. Lewis.
A probabilistic property of Katsuura's continuous nowhere
differentiable function.
J. Math. Anal. Appl., 353(1):224--231, 2009.
[ DOI |
http ]
|
[9]
|
Thomas M. Lewis.
The hitting time for the height of a random recursive tree.
Combin. Probab. Comput., 17(6):831--835, 2008.
[ DOI |
http ]
|
[10]
|
Kevin Hutson and Thomas M. Lewis.
The expected length of a minimal spanning tree of a cylinder graph.
Combin. Probab. Comput., 16(1):63--83, 2007.
[ DOI |
http ]
|
[11]
|
Thomas M. Lewis.
An analysis of Katsuura's continuous nowhere differentiable function.
2005.
Self-published.
[ .pdf ]
|
[12]
|
Davar Khoshnevisan and Thomas M. Lewis.
Optimal reward on a sparse tree with random edge weights.
J. Appl. Probab., 40(4):926--945, 2003.
|
[13]
|
Thomas M. Lewis and Geoffrey Pritchard.
Tail properties of correlation measures.
J. Theoret. Probab., 16(3):771--788, 2003.
[ DOI |
http ]
|
[14]
|
Thomas M. Lewis.
The length of the longest head-run in a model with long range
dependence.
J. Theoret. Probab., 14(2):357--378, 2001.
[ DOI |
http ]
|
[15]
|
Davar Khoshnevisan and Thomas M. Lewis.
Stochastic calculus for Brownian motion on a Brownian fracture.
Ann. Appl. Probab., 9(3):629--667, 1999.
[ DOI |
http ]
|
[16]
|
Thomas M. Lewis and Geoffrey Pritchard.
Correlation measures.
Electron. Comm. Probab., 4:77--85 (electronic), 1999.
[ DOI |
http ]
|
[17]
|
Davar Khoshnevisan and Thomas M. Lewis.
Iterated Brownian motion and its intrinsic skeletal structure.
In Seminar on Stochastic Analysis, Random Fields and
Applications (Ascona, 1996), volume 45 of Progr. Probab., pages
201--210. Birkhäuser, Basel, 1999.
|
[18]
|
Thomas M. Lewis.
Limit theorems for partial sums of quasi-associated random variables.
In Asymptotic methods in probability and statistics (Ottawa,
ON, 1997), pages 31--48. North-Holland, Amsterdam, 1998.
[ DOI |
http ]
|
[19]
|
Davar Khoshnevisan and Thomas M. Lewis.
A law of the iterated logarithm for stable processes in random
scenery.
Stochastic Process. Appl., 74(1):89--121, 1998.
[ DOI |
http ]
|
[20]
|
Davar Khoshnevisan, Thomas M. Lewis, and Zhan Shi.
On a problem of Erdős and Taylor.
Ann. Probab., 24(2):761--787, 1996.
[ DOI |
http ]
|
[21]
|
Davar Khoshnevisan and Thomas M. Lewis.
Chung's law of the iterated logarithm for iterated Brownian motion.
Ann. Inst. H. Poincaré Probab. Statist., 32(3):349--359,
1996.
[ http ]
|
[22]
|
Davar Khoshnevisan and Thomas M. Lewis.
The uniform modulus of continuity of iterated Brownian motion.
J. Theoret. Probab., 9(2):317--333, 1996.
[ DOI |
http ]
|
[23]
|
Davar Khoshnevisan and Thomas M. Lewis.
The favorite point of a Poisson process.
Stochastic Process. Appl., 57(1):19--38, 1995.
[ DOI |
http ]
|
[24]
|
Davar Khoshnevisan, Thomas M. Lewis, and Wenbo V. Li.
On the future infima of some transient processes.
Probab. Theory Related Fields, 99(3):337--360, 1994.
[ DOI |
http ]
|
[25]
|
Thomas M. Lewis and Wenbo V. Li.
How long does it take to see a flat Brownian path on the average?
Statist. Probab. Lett., 16(5):347--354, 1993.
[ DOI |
http ]
|
[26]
|
Thomas M. Lewis.
A law of the iterated logarithm for random walk in random scenery
with deterministic normalizers.
J. Theoret. Probab., 6(2):209--230, 1993.
[ DOI |
http ]
|
[27]
|
Thomas M. Lewis.
A self-normalized law of the iterated logarithm for random walk in
random scenery.
J. Theoret. Probab., 5(4):629--659, 1992.
[ DOI |
http ]
|