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1 Introduction

Explicit examples of continuous nowhere differentiable functions have been
known since the 19th century. In 1872, for example, Karl Weierstrass, in a
lecture before the Royal Academy of Science in Berlin, demonstrated that
the function

W (x) =
∞∑

k=0

ak cos(bkπx)

is continuous but nowhere differentiable whenever 0 < a < 1, ab >
1 + 3π/2, and b > 1 is an odd integer. Weierstrass’ example was published
in 1875 by Paul du Bois-Reymond. Because his was the first published
example of a continuous nowhere differentiable function, Weierstrass is
generally given credit for being the first to give such a construction. How-
ever examples of continuous nowhere differentiable functions had already
been developed. Perhaps the first such construction was given by Bernard
Bolzano, circa 1830. Bolzano’s example is especially interesting in our
present setting since it does not make use infinite series; his construction
is essentially geometric. A fascinating account of the history of continuous
and nowhere differentiable functions can be found in the master’s thesis
of Thim [9].

In 1991, Katsuura [7] published an example of a continuous nowhere
differentiable function based on a fixed-point method. Let X = [0, 1]2 de-
note the unit square of the plane and letK(X) denote the set of non-empty
compact subsets of X . K(X) is a complete metric space in the Hausdorff
metric (see, for example, Theorem 2.4.4 of Edgar [3]). Let A1, A2, and A3

be affine contractions on X given by the following rules: for (x, y) ∈ X, let

A1(x, y) =

(
x

3
,
2y

3

)
, A2(x, y) =

(
2− x

3
,
1 + y

3

)
,

A3(x, y) =

(
2 + x

3
,
1 + 2y

3

)
.

These maps are illustrated in Figure 1.
Given F ∈ K(X), let

A(F ) = A1(F ) ∪ A2(F ) ∪ A3(F ).

Let G0 = {(x, x) : x ∈ [0, 1]} and, for k ≥ 1, let

Gk = A1(Gk−1) ∪ A2(Gk−1) ∪ A3(Gk−1).
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Figure 1: A1 maps the unit square onto the green region
by contraction; A2 maps the unit square onto the blue
region by contraction and reflection; and A3 maps the
unit square onto the red region by contraction.

Figure 2: The functions f0, f1, and f2 respectively.

Katsuura showed that A is a contraction map on K(X). As such, there is a
unique fixed point G of A in K(X), and Gk → G in the Hausdorff metric.
For each k ≥ 0, Gk is the graph of a continuous function, which we will
denote by fk; see Figure 1. The set G is the graph of a function f , which is
Katsuura’s function. Katsuura showed that the sequence of functions {fn}
converges uniformly to f and that f is continuous but nowhere differen-
tiable. Katsuura’s function is an example of self-affine dust and is closely
related to the class of Kiesswetter’s curves; see, for example, [3], p. 200ff.

Chuang and Lewis [2] studied the increments of Katsuura’s function
and showed that if x is chosen uniformly from the interval [0, 1), then
ln |f(x+ hk)− f(x)|, suitably normalized, converges in measure to a stan-
dard normal random variable as hk → 0+ along either hk = 1/3k or hk =
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2/3k, k → +∞. In part this result was anticipated in the literature, for prob-
abilistic properties of continuous nowhere differentiable functions had al-
ready been investigated by Kono [8] and Gamkrelidze [5] for Takagi’s
function and by Gamkrelidze [4] for Weierstrass’ function. There are two
main themes in the present paper, both of which are motivated by the in-
vestigation Chuang and Lewis.

The chief shortcoming in the result Chuang and Lewis is the limitation
on the approach of hk to 0 along the special subsequences. The underlying
issue is this: given h > 0 and x chosen uniformly from [0, 1), is the random
variable ln |f(x+ h)− f(x)| proper? Stated another way, does the set

{x ∈ [0, 1− h) : f(x+ h)− f(x) = 0}

have Lebesgue measure 0? In Section 4 we answer this question in the
affirmative provided that h > 0 is a triadic rational number, that is, h =
j/3k for some positive integers j and k; see Theorem 4.1. 1 A crucial step
in the proof of this result is a series representation of Katsuura’s function
which we develop in Section 3; see Lemma 3.1.

The second main theme of this paper is focused on quantifying the
continuity of f . In Theorem 5.1 of Section 5 we give an explicit exponen-
tial rate for the uniform modulus of continuity of f and in Theorem 6.1
of Section 6 we give, among other things, an explicit exponential rate for
the local modulus of continuity of f . We show that f has the same local
behavior at almost all of the points in [0, 1] and that this local behavior is
quite different from the global or uniform behavior of f . In this way Kat-
suura’s function acts very much like the path of a Brownian motion. The
uniform behavior of a Brownian path is given by Lévy’s modulus of con-
tinuity while local behavior is given by the law of the iterated logarithm;
see, for example, Theorems 9.23 and 9.25 of [6].

2 Preliminary definitions and results

For k ≥ 0, let Dk = {j/3k : j ∈ Z} and let D = ∪k≥1Dk, the so-called triadic
rational numbers. Throughout let t ∈ [0, 1) and let t = .t1t2t3 . . . be the
unique ternary expansion of t.2

1It is still open as to whether or not the set in question has measure 0 for any h > 0.
2Unique in the sense that t − .t1t2 . . . tk < 3−k. In this way we eliminate ternary

expansions ending in repeating 2’s.
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Let St = 3t (mod 1). Note that S is simply the shift operator on the
ternary expansion of t, that is,

S(.t1t2t3 · · · ) = .t2t3 · · ·

We will let Sk denote the k-fold self-composition of S.
For k ≥ 1, let T k be the truncation operator T kt = 3−kb3ktc. Effectively

T k chops off all of the digits in the ternary expansion of a number after the
kth place; thus,

T k(.t1t2 . . . tktk+1 . . . ) = .t1t2 . . . tk000 . . .

Finally let σ0(t) = 0 and, for k ≥ 1, let

σk(t) = σk(.t1t2t3 . . . ) = #{i : ti = 1, 1 ≤ i ≤ k}.

Thus σk(t) merely counts the number of times 1 appears in the first k terms
of the ternary expansion of t. Our next result is well known, but we in-
clude it for completeness.

2.1 Theorem. For each k ≥ 1, σk : [0, 1) → R is a binomial random variable
with parameters k and 1/3 with respect to Lebesgue measure.

Proof. Our proof is a minor modification of the analogous result for dyadic
expansions; see, for example, pages 3 through 5 of Billingsley [1]. Let m
denote Lebesgue measure.

Let u1, u2, . . . , uk be elements from {0, 1, 2}. Since

{x ∈ [0, 1) : T kx = .u1u2 . . . uk} = [.u1u2 . . . uk, .u1u2 . . . uk + 1/3k),

we may conclude that

m{x ∈ [0, 1) : T kx = .u1u2 . . . uk} =
1

3k
.

Since there are
(

k
i

)
2k−i arrangements of u1, u2, . . . , uk containing exactly k

1’s, it follows that

m{x ∈ [0, 1) : σk(x) = i} =

(
k

i

)
2k−i 1

3k
=

(
k

i

)
(1/3)i (2/3)k−i ,

as was to be shown.
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For t ∈ [0, 1), let

pk(t) = (2/3)k−σk(t)(−1/3)σk(t) =
2k(−2)−σk(t)

3k
. (1)

2.1 Lemma. Let k ≥ 1. If α and β are consecutive elements of Dk ∩ [0, 1), then

(1) σk(β) = σk(α)± 1 and

(2) |pk(β)| = 2±1|pk(α)|.

Proof. We will prove (1) by induction on k. The claim is certainly true if
k = 1; the elements of D1 ∩ [0, 1) are .0, .1, and .2, and the corresponding
values of σ1 are 0, 1, and 0.

Let us suppose that the result is true for some k ≥ 1 and let

α = .α1 . . . αk and β = .β1 . . . βk

be consecutive elements of Dk ∩ [0, 1) with α < β; thus, we may assume
that

σk(β) = σk(α)± 1. (2)

Then
.α1 . . . αk0, .α1 . . . αk1, .α1 . . . αk2, .β1 . . . βk0

will be consecutive elements in Dk+1∩ [0, 1), and the corresponding values
of σk+1 for these numbers will be σk(α), σk(α) + 1, σk(α), and σk(β) =
σk(α) ± 1, by (2). By inspection we find that the claim is true for these
consecutive elements of Dk+1 ∩ [0, 1) as well.

The proof of (2) follows trivially from (1) and the definition of pk.

We will give an alternate description of the sequence of functions {fk}.
Let f0(x) = x be the identity function. Thereafter let

fk(t) =


2
3
fk−1(St) b3tc = 0

−1
3
fk−1(St) + 2

3
b3tc = 1

2
3
fk−1(St) + 1

3
b3tc = 2

(3)

We can summarize this in the compact formula:

fk(t) = p1(t)fk−1(St) + f1(Tt). (4)

Formula (4) can be easily extended by induction.
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2.2 Theorem. For each k ≥ 1

fk(t) = pj(t)fk−j(S
jt) + fj(T

jt).

for all t ∈ [0, 1) and for each 1 ≤ j ≤ k.

Proof. The statement is true in the case k = 1 and j = 1, by the very
definition of f1. Now let us assume that the claim is true up to index k − 1
and let us consider the validity of this claim for index k.

Note that equation (4) establishes the base case, j = 1. Now let us
assume that this result is true up to an index 1 ≤ j < k. Then we find that

fk(t) = pj(t)fk−j(S
jt) + fj(T

jt)

= pj(t)
{
p1(S

jt)fk−j−1(S
j+1t) + f1(TS

jt)
}

+ fj(T
jt) (by eq. (4))

= pj(t)p1(S
jt)fk−(j+1)(S

j+1t) + pj(t)f1(TS
jt) + fj(T

jt)

Observe that pj(t)p1(S
jt) = pj+1(t). By our induction hypothesis,

fj+1(t) = pj(t)f1(S
jt) + fj(T

jt);

thus, upon substituting T j+1t for t in the above, we obtain

fj+1(T
j+1t) = pj(T

j+1t)f1(S
jT j+1t) + fj(T

jT j+1t).

However, pj(T
j+1t) = pj(t), SjT j+1t = TSjt, and T jT j+1t = T jt. Conse-

quently,
pj(t)f1(TS

jt) + fj(T
jt) = fj+1(T

j+1t).

Summarizing our findings, we have

fk(t) = pj+1(t)fk−(j+1)(S
j+1t) + fj+1(T

j+1t),

as was to be shown.

2.3 Theorem. For each j ≥ 1,

f(t) = pj(t)f(Sjt) + f(T jt). (5)

Proof. Recall that Katsuura’s function is the uniform limit of the sequence
{fk} on the unit interval. Thus by taking limits as k tends to infinity in the
formula of Theorem 2.2, we obtain

f(t) = pj(t)f(Sjt) + fj(T
jt). (6)
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We are left to show that fj(T
jt) = f(T jt). Notice that if u ∈ Dj∩ [0, 1), then

T ju = u, Sju = 0, and equation (6) becomes

f(u) = fj(u).

In other words, f agrees with fj on Dj ∩ [0, 1). 3 In particular, since T jt ∈
Dj ∩ [0, 1), f(T jt) = fj(T

jt), which finishes our proof.

We finish this section with two simple consequences of Theorem 2.3.

2.1 Corollary. Let k ≥ 1 and let α, β be consecutive elements of Dk with α < β.
Then f(β)− f(α) = pk(α).

Proof. For x ∈ (α, β), T kx = α and, by Theorem 2.3, f(x) = pk(α)f(Skx) +
f(α) As x→ β−, Skx→ 1 and, since f is continuous, this implies

f(β) = pk(α)f(1) + f(α) = pk(α) + f(α),

as was to be shown.

2.2 Corollary. Let k ≥ 1 and let α, β be consecutive elements of Dk with α < β.
If α ≤ x ≤ β, then f(x) is between f(α) and f(β).

Proof. The claim is trivial if x = α or x = β; thus, we may assume that
α < x < β. In this case, note that T kx = α and pk(x) = pk(α); let u = Skx.
Then, by Theorem 2.3,

f(x) = pk(α)f(u) + f(α).

Recall that 0 ≤ f(u) ≤ 1 and, by Corollary 2.1, f(β) − f(α) = pk(α). Thus
if pk(α) > 0, then

f(α) ≤ f(x) ≤ f(α) + pk(a) = f(β).

If pk(α) < 0, then

f(β) = f(α) + pk(α) ≤ f(x) ≤ f(α).

In either case, the claim has been established.
3This assertion is quite clear from Katsuura’s geometric definition, but it is not difficult

to see on purely analytic grounds as well.
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3 A representation formula

In this section we will present a series representation of the Katsuura func-
tion.

3.1 Lemma. For t ∈ [0, 1),

f(t) =
∞∑

k=0

pk(t)f(.tk+1) (7)

Note please that f(.tk+1) will be 0, 2/3 or 1/3 depending upon whether
tk+1 = 0, 1 or 2 respectively.

Proof. Let t = .t1t2t3 · · · ∈ [0, 1), and recall

T kt = .t1t2 . . . tk00 . . .

Since f(t) = limk→∞ f(Tkt), we have

f(t) = lim
k→∞

f(T1t) +
(
f(T2t)− f(T1t)

)
+ · · ·+

(
f(Tkt)− f(Tk−1t)

)
= f(T1t) +

∞∑
k=1

(
f(Tk+1t)− f(Tkt)

)
However, by Theorem 2.3 we see that

f(Tk+1t)− f(Tkt) = pk(Tk+1t)f(SkTk+1t) = pk(t)f(.tk+1).

Recalling that p0(t) = 1 for all t, we have

f(t) =
∞∑

k=0

pk(t)f(.tk+1),

as was to be shown.

By Lemma 3.1, we may write

f(t) =
∞∑

k=0

(
2

3

)k

Hk(t),
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Figure 3: The graphs of H2 and H3 respectively.

where

Hk(t) =

(
−1

2

)σk(t)

f(.tk+1).

The graphs ofH2 andH3 are given in Figure 3. Observe that as k increases,
the functions Hk(t) increase in “frequency”. Thus we have a representa-
tion of Katsuura’s function as a sum of terms decreasing in amplitude but
increasing in frequency as k increases. In this sense, our representation
bears some resemblance to the example of Weierstrass.

4 Concerning the increments

Let m denote Lebesgue measure. Here is the main result of this section.

4.1 Theorem. If h ∈ (0, 1) is a triadic rational number, then

m{t ∈ [0, 1− h) : f(t+ h)− f(t) = 0} = 0.

We begin with a lemma that makes direct use of our representation
formula (7).

4.1 Lemma. Let α, t ∈ Dk ∩ [0, 1), k ≥ 1. If pk(α) = pk(t), then f(α) 6= f(t).

Proof. Since α, t ∈ Dk ∩ [0, 1) for some k ≥ 1, we have, by Lemma 3.1,

f(t) =
k−1∑
j=0

pj(t)f(.tj+1)

f(α) =
k−1∑
j=0

pj(α)f(.αj+1)
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and therefore

f(t)− f(α) =
k−1∑
j=0

(
pj(t)f(.tj+1)− pj(α)f(.αj+1)

)
.

Let ν = max{i : αi 6= ti}. The condition pk(α) = pk(t) is equivalent to
the condition that α and t have the same number of 1’s in their ternary ex-
pansions. Since the ternary digits of α and t agree after index ν, it follows
that

pj(α)f(.αj+1) = pj(t)f(.tj+1) for j ≥ ν,

and we may conclude that

f(t)− f(α) =
ν−1∑
j=0

(
pj(t)f(.tj+1)− pj(α)f(.αj+1)

)
.

Recalling the definition of pk, we may write

3ν
(
f(t)− f(α)

)
=

ν−1∑
j=0

3ν−1−j2j
(
(−2)−σj(t)3f(.tj+1)− (−2)−σj(α)3f(.αj+1)

)
Observe that every term save the last in the sum on the right-hand side is
a multiple of 3; thus,

3ν
(
f(t)− f(α)

)
= 2ν−1

(
(−2)−σν−1(t)3f(.tν)− (−2)−σν−1(α)3f(.αν)

)
(mod 3)

Since 2 = −1 (mod 3) and −2 = 1 (mod 3), we may simply write

3ν
(
f(t)− f(α)

)
= (−1)ν−1

(
3f(.tν)− 3f(.αν)

)
(mod 3)

By definition, tν 6= αν , and an elementary listing of all of the cases shows
that

3f(.tν)− 3f(.αν)
)
6= 0 (mod 3)

which shows that f(t) 6= f(α), as was to be shown.

We are now prepared to prove Theorem 4.1.
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Proof of Theorem 4.1. Let h ∈ (0, 1) be a triadic rational and let t ∈ [0, 1−h).
Let us assume that h = .h1h2 . . . hk000 . . . for some k ≥ 1 and let t =
t1t2 . . . tktk+1 . . . . Then

t+ h = .α1α2 . . . αktk+1 . . .

According to Theorem 2.3, we have

f(t+ h) = pk(.α1α2 . . . αk)f(Skt) + f(.α1α2 . . . αk)

f(t) = pk(.t1t2 . . . tk)f(Skt) + f(t1t2 . . . tk)

Thus
f(t+ h)− f(t) = ∆pf(Skt) + ∆f,

where

∆p = pk(.α1α2 . . . αk)− pk(.t1t2 . . . tk)

∆f = f(.α1α2 . . . αk)− f(.t1t2 . . . tk)

If we let E denote the set of triadic rationals .t1t2 . . . tk such that t+ h < 1,
then

{t ∈ [0, 1−h) : f(t+h)−f(t) = 0} =
⋃

.t1t2...tk∈E

{u ∈ [0, 1) : ∆pf(u)+∆f = 0}

Since there are only finitely many elements in E, it is enough to show that

m{u ∈ [0, 1) : ∆pf(u) + ∆f = 0} = 0

for each .t1t2 . . . tk ∈ E. There are two cases to consider.

(1) If ∆f 6= 0, then we must consider the equation

∆pf(u) = −∆f

If ∆p = 0, then there are no solutions to this equation, and the set in
question has measure 0. If ∆p 6= 0, then we seek the measure of the
level set

{u ∈ [0, 1) : f(u) = −∆f/∆p}
As was shown in Chuang and Lewis [2], this level set has measure 0.

(2) If ∆f = 0, then we know from Theorem 4.1 that ∆p 6= 0 and thus we
seek the measure of the level set

{u ∈ [0, 1) : f(u) = 0},
which has only the trivial solution hence measure 0.

This completes our proof.
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5 The uniform modulus of continuity

It is evident that Katsuura’s function f fluctuates throughout the interval
[0, 1]. This fluctuation can be quantified: for 0 < h < 1, the function

ω(h) = sup
s,t∈[0,1]
|s−t|≤h

|f(t)− f(s)|,

called the uniform modulus of continuity of f , is a measure of the oscillation
of f throughout the interval [0, 1]. Let

Γ =
log2(3/2)

log2(3)
= 1− log3(2) = 0.36907 . . . (8)

5.1 Theorem. If h ∈ (0, 1), then 2
3
hΓ ≤ ω(h) ≤ 3

2
hΓ. In particular,

lim
h→0+

log2 ω(h)−1

log2(h
−1)

= Γ

Proof. The proof is composed of upper and lower bound arguments. The
lower bound argument is the easier of the two, and we will begin there.

Let 1/3k ≤ h < 1/3k−1, k ≥ 1. Since h 7→ ω(h) is increasing in h,

ω(h) ≥ ω(1/3k) ≥ |f(1/3k)− f(0)| = f(1/3k) = (2/3)k >
2

3
hΓ,

which is the lower bound.
In the argument for the upper bound we will make use of the observa-

tion that f has an odd symmetry about the point (1/2, 1/2). This may be
stated as

f(1− y) + f(y) = 1, for all y ∈ [0, 1]

This symmetry is exhibited on smaller scales throughout the interval [0, 1].
Thus suppose that xj and xj+1 are consecutive elements of Dk. Then for
y ∈ [xj, xj+1] we have

f(xj+1 − y) + f(xj + y) = f(xj+1) + f(xj). (9)

Let s, t ∈ Dk ∩ [0, 1) for some k ≥ 1 with s < t and let h = t− s = j/3k.
Let us assume that 3` ≤ j < 3`+1 and therefore 3`−k ≤ h < 3`+1−k. This
implies that

h = .00 . . . 0hk−`hk−`+1 . . . hk, hk−` 6= 0,
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Thus
f(h) = (2/3)k−`−1f(.hk−`hk−`+1 . . . hk)

Since f is bounded by 1, we may conclude that

f(h) ≤ (2/3)k−`−1 = (2/3)k−` 3

2
=

3

2
hΓ. (10)

This is our fundamental starting point.
Let us consider various cases for the relationship between s and t.

(1) Suppose that 0 ≤ s < 1/3 and 1/3 ≤ t < 2/3. Then

f(t)− f(s) = (f(t)− f(1/3)) + (f(1/3)− f(s))

= −(f(1/3)− f(t)) + (f(1/3)− f(s)).

In this case t and 1/3 = .1 share the same first ternary digit; thus,

0 ≤ (f(1/3)− f(t)) = −1/3(f(0)− f(St)) =
1

3
f(St).

But |St| = 3|t− 1/3| ≤ 3h and therefore

0 ≤ (f(1/3)− f(t)) ≤ 1

3

3

2
|3h|Γ

Since 3γ = 3/2, it follows that

0 ≤ (f(1/3)− f(t)) ≤ 3

2
hΓ.

Likewise, by our symmetry formula (9),

0 ≤ f(1/3)− f(s) = f(1/3− s) ≤ 3

2
|1/3− s|Γ ≤ 3

2
hΓ.

In summary, |f(t) − f(s)| ≤ 3
2
|t − s|Γ for s ∈ [0, 1/3) ∩ Dk and t ∈

[1/3, 2/3) ∩Dk.

(2) If s ∈ [1/3, 2/3)∩Dk and t ∈ [2/3, 1)∩Dk, then, arguing as above, we
can show that

|f(t)− f(s)| ≤ 3

2
|t− s|Γ

in this case as well.
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(3) Suppose that s ∈ [0, 1/3) ∩Dk and t ∈ [2/3, 1) ∩Dk. Then

|f(t)− f(s)| ≤ 1 =
3

2

2

3
=

3

2

(
1

3

)Γ

≤ 3

2
hΓ.

(4) Finally let us suppose that s and t are in one of the subintervals:
[0, 1/3) ∩Dk, [1/3, 2/3) ∩Dk, or [2/3, 1) ∩Dk. In this case the ternary
expansions of s and t share at least the first digit. Let us suppose
that s and t share the same first p digits, p ≥ 1. It follows that Spt
and Sps must conform to one of our previous cases (1)-(3). Since
|Spt− Sps| = 3p|t− s| = 3ph,

|f(t)− f(s)| = (2/3)p|f(Spt)− f(Sps)| ≤ 3

2
(2/3)p(3ph)Γ =

3

2
hΓ.

Finally given s, t ∈ [0, 1) we note that Tkt and Tks are in Dk ∩ [0, 1);
hence,

|f(t)− f(s)| ≤ |f(t)− f(Tkt)|+ |f(Tkt)− f(Tks)|+ |f(Tks)− f(s)|

≤ |f(t)− f(Tkt)|+
3

2
|Tkt− Tks|Γ + |f(Tks)− f(s)|

By letting k increase without bound, we may conclude that

|f(t)− f(s)| ≤ 3

2
|t− s|Γ

This shows that ω(h) ≤ 3
2
hΓ, which concludes the argument for the upper

bound.

6 The local modulus of continuity

In the previous section we studied the uniform continuity of f on [0, 1]; in
this section we will study the continuity of f at a point. To this end, for
x ∈ [0, 1) and h ∈ [0, 1/2), let

ω(x, h) = sup
s,t∈[x−h,x+h]∩[0,1]

|f(t)− f(s)|

This is the modulus of continuity of f at x. We will present three results
concerning the behavior of the local modulus of continuity as h → 0+.
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As we shall see, the typical value of ω(x, h) is of smaller order than the
corresponding value of ω(h). In other words, it is the contributions of
the local moduli from an exceptional set of points which influences the
uniform modulus.

Let
γ = Γ +

1

3
log3(2) = 1− 2

3
log3(2) = 0.57938 . . . (11)

Our results on the local modulus of continuity of f are consequences of
our next theorem.

6.1 Theorem. There exist constants C1 and C2 such that

C1 ≤ log2

(
hγ

ω(x, h)

)
−

(
σk(x)−

k

3

)
≤ C2

for all x ∈ [0, 1), where k = k(h) is the smallest positive integer such that 2/3k ≤
h < 2/3k−1.

This theorem demonstrates that ω(x, h) is closely related to σk(x); con-
sequently, results about ω(x, h) can be lifted from results about σk(x). In
Theorem 2.1 it was shown that if x is chosen uniformly from [0, 1), then
σk(x) has a binomial distribution with parameters k and 1/3. The follow-
ing three results (the strong law of large numbers, the central limit theo-
rem, and the law of the iterated logarithm) come from this observation:

(1) For almost all x ∈ [0, 1),

lim
k→∞

σk(x)

k
=

1

3
.

(2) For any a, b ∈ R, a < b,

m

{
x ∈ [0, 1) : a ≤ σk(x)− k/3√

(2/9)k
≤ b

}
→ 1√

2π

∫ b

a

e−u2/2du.

(3) For almost all x ∈ [0, 1),

lim inf
k→∞

σk(x)− k/3√
(2/9)k ln ln(k)

= −1 and lim sup
k→∞

σk(x)− k/3√
(2/9)k ln ln(k)

= 1.
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The relationship between k and h stated in Theorem 6.1 implies that

D1 ≤ k − log3(2) log2(h
−1) ≤ D2. (12)

Thus we can restate items (1), (2), and (3) above in the following form:

(1) For almost all x ∈ [0, 1),

lim
h→0+

log2 ω(x, h)−1

log2(h
−1)

= γ.

This result should be compared with that of Theorem 5.1.

(2) Let

ϕ(h) =

√
2

9
log2(h

−1) log3(2)

For any a, b ∈ R, a < b, as h→ 0+,

m

{
x ∈ [0, 1) :

1

ϕ(h)
log2

(
hγ

ω(x, h)

)
∈ [a, b]

}
→

∫ b

a

e−u2/2du.

Thus, for example, as h→ 0+, 68% of the points x in the interval [0, 1)
satisfy

log2(h
−γ)− ϕ(h) ≤ log2 ω(x, h)−1 ≤ log2(h

−γ) + ϕ(h).

(3) Let

ψ(h) =

√
2

9
log3(2) log2(1/h) ln ln log2(1/h).

Then, for almost all x in [0, 1),

lim inf
h→0+

log2 ω(x, h)−1 − log2 h
−γ

ψ(h)
= −1

and

lim sup
h→0+

log2 ω(x, h)−1 − log2 h
−γ

ψ(h)
= 1.

In particular, for any ε > 0, eventually

log2 h
−γ − (1 + ε)ψ(h) ≤ log2 ω(x, h)−1 ≤ log2 h

−γ + (1 + ε)ψ(h)
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while infinitely often

log2 ω(x, h)−1 ≥ log2 h
−γ + (1− ε)ψ(h)

and infinitely often

log2 ω(x, h)−1 ≤ log2 h
−γ − (1− ε)ψ(h)

We turn now to the proof of Theorem 6.1, and we begin with a lemma
on bounding the increments of f .

6.1 Lemma. Let a, b ∈ Dk ∩ [0, 1) with a < b and suppose that b− a = `/3k; let
x ∈ [a, b]. If s, t ∈ [a, b], then

|f(t)− f(s)| ≤ `2`|pk(x)|.

Proof. We will assume that s < t. Let a = α0 < α1 < · · · < α`−1 < α` = b be
the consecutive elements of Dk between a and b. First we will show that

|f(t)− f(s)| ≤
`−1∑
i=0

|pk(αi)|. (13)

Let us suppose that s, t ∈ [αj, αj+1] for some j ∈ {0, 1, . . . , `− 1}. Then, by
Corollary 2.2,

|f(t)− f(s)| ≤ |f(αj+1)− f(αj)| = |pk(αj)| ≤
`−1∑
i=0

|pk(αi)|,

which verifies (13) in this case. Otherwise it must be that s ∈ [αj, αj+1) and
t ∈ (αm, αm+1] for some indices j and m ∈ {0, 1, . . . , `− 1}, with j < m. By
telescoping and Corollary 2.2, we may write

|f(t)− f(s)|
≤ |f(t)− f(αm)|+ |f(αm)− f(αm−1)|+ · · ·+ |f(αj+1)− f(s)|

≤
m∑

i=j

|f(αi+1)− f(αi)| =
m∑

i=j

|pk(αi)|

≤
`−1∑
i=0

|pk(αi)|,
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which, once again, verifies (13).
To finish the proof, observe that x ∈ [a, b] implies that pk(x) = pk(αj)

for some j ∈ {0, 1, . . . , `}, and, by Lemma 2.1,

|pk(αi)| ≤ 2`|pk(x)|

for each i ∈ {0, 1, . . . , `− 1}; thus,

|f(t)− f(s)| ≤
`−1∑
i=0

|pk(αi)| ≤ `2`|pk(x)|,

as was to be shown.

Proof of Theorem 6.1. Fix x ∈ [0, 1]. Let α and β be elements of Dk ∩ [0, 1] be
chosen so that

[α, β] ⊃ [x− h, x+ h] ∩ [0, 1)

with β − α minimized. Then

α > x− h− 1

3k
and β < x+ h+

1

3k

and β − α < 2h + 2/3k < 14/3k, where we have the assumption that h <
2/3k−1 to obtain the last inequality. It follows that β−α = `/3k, with ` ≤ 13.
By Lemma 6.1,

ω(x, h) ≤ sup
s,t∈[α,β]

|f(t)− f(s)| ≤ 13 · 213|pk(x)|,

which gives us an upper bound on the modulus at x.
To produce a corresponding lower bound, let α = .x1x2 . . . xk and let

β = α+ 1/3k. Then α, β ∈ Dk ∩ [0, 1] and α, β ∈ [x− h, x+ h]∩ [0, 1]. Thus,
by Corollary 2.1,

ω(x, h) ≥ |f(β)− f(α)| = |pk(α)| = |pk(x)|.

In summary
|pk(x)| ≤ ω(x, h) ≤ 13 · 213|pk(x)|. (14)

for each x.
By combining (1) and (12), we may assert that there exist constants E1

and E2 such that

E1 ≤ log2 |pk(x)|+
{
σk(x)−

k

3

}
+ log2(h

−γ) ≤ E2

This chain of inequalities in conjunction with (14) completes our proof.
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