Definition: If R is a commutative ring and I is an ideal in R, let R/I represent the set of additive cosets $a + I$ with addition defined by $(a + I) + (b + I) = ((a + b) + I)$, and multiplication defined by $(a + i)(b + I) = (ab + I)$.

Theorem: The above definition is well-defined, and yields a ring with additive identity $(0 + I)$ and multiplicative identity $(1 + I)$.

Theorem: (First Homomorphism Theorem for Rings) If $f : R_1 \rightarrow R_2$ is a ring homomorphism, then $R_1/\ker f \cong \text{im } f$.

Theorem: If K is a field and $I = (p)$ is an ideal with p an irreducible polynomial in $K[x]$, then $K[x]/I$ is a field.

Example: $\mathbb{R}[x]/(x^2 + 1)$ is a field, and we can show that it isomorphic to \mathbb{C}.

Theorem: If K is a field and $p \in K[x]$ is an irreducible polynomial, then the field $K[x]/(p)$ contains an isomorphic copy of K and a root $z = x + I$ of p.

Theorem: Using the notation from the previous theorem, if $g \in K[x]$ has a root z, then $p \mid g$.

Theorem: Let $p \in K[x]$ be irreducible of degree n, and let $I = (p)$, and let $F = K[x]/I$. Then every element in F has a unique expression of the form
\[b_0 + b_1z + b_2z^2 + \ldots + b_{n-1}z^{n-1}\]
where z is a root of p and the b_i’s are in K.

Corollary: (Converse to the third theorem on this handout.) If K is a field, and $f \in K[x]$, and $K[x]/(f)$ is a field, then f is an irreducible polynomial in $K[x]$.