The Calculus of Functions of Several Variables

Section 4.2
Best Affine Approximations

Best affine approximations
The following definitions should look very familiar.

Definition Suppose $f : \mathbb{R}^m \to \mathbb{R}^n$ is defined on an open ball containing the point c. We call an affine function $A : \mathbb{R}^m \to \mathbb{R}^n$ the best affine approximation to f at c if (1) $A(c) = f(c)$ and (2) $\|R(h)\|$ is $o(h)$, where

$$R(h) = f(c + h) - A(c + h). \quad (4.2.1)$$

Suppose $A : \mathbb{R}^n \to \mathbb{R}^n$ is the best affine approximation to f at c. Then, from our work in Section 1.5, there exists an $n \times m$ matrix M and a vector b in \mathbb{R}^n such that

$$A(x) = Mx + b \quad (4.2.2)$$

for all x in \mathbb{R}^m. Moreover, the condition $A(c) = f(c)$ implies $f(c) = Mc + b$, and so $b = f(c) - Mc$. Hence we have

$$A(x) = Mx + f(c) - Mc = M(x - c) + f(c) \quad (4.2.3)$$

for all x in \mathbb{R}^m. Thus to find the best affine approximation we need only identify the matrix M in (4.2.3).

Definition Suppose $f : \mathbb{R}^m \to \mathbb{R}^n$ is defined on an open ball containing the point c. If f has a best affine approximation at c, then we say f is differentiable at c. Moreover, if the best affine approximation to f at c is given by

$$A(x) = M(x - c) + f(c), \quad (4.2.4)$$

then we call M the derivative of f at c and write $Df(c) = M$.

Now suppose $f : \mathbb{R}^m \to \mathbb{R}^n$ and A is an affine function with $A(c) = f(c)$. Let f_k and A_k be the kth coordinate functions of f and A, respectively, for $k = 1, 2, \ldots, n$, and let R be the remainder function

$$R(h) = f(c + h) - A(c + h)$$
$$= (f_1(c + h) - A_1(c + h), f_2(c + h) - A_2(c + h), \ldots, f_n(c + h) - A_n(c + h)).$$
Then
\[
\frac{R(h)}{\|h\|} = \left(\frac{f_1(c+h) - A_1(c+h)}{\|h\|}, \frac{f_2(c+h) - A_2(c+h)}{\|h\|}, \ldots, \frac{f_n(c+h) - A_n(c+h)}{\|h\|} \right),
\]
and so
\[
\lim_{h \to 0} \frac{\|R(h)\|}{\|h\|} = 0,
\]
that is, \(A \) is the best affine approximation to \(f \) at \(c \), if and only if
\[
\lim_{h \to 0} \frac{f_k(c+h) - A_k(c+h)}{\|h\|} = 0
\]
for \(k = 1, 2, \ldots, n \). But (4.2.6) is the statement that \(A_k \) is the best affine approximation to \(f_k \) at \(c \). In other words, \(A \) is the best affine approximation to \(f \) at \(c \) if and only if \(A_k \) is the best affine approximation to \(f_k \) at \(c \) for \(k = 1, 2, \ldots, n \). This result has many interesting consequences.

Proposition If \(f_k : \mathbb{R}^m \to \mathbb{R} \) is the \(k \)th coordinate function of \(f : \mathbb{R}^m \to \mathbb{R}^n \), then \(f \) is differentiable at a point \(c \) if and only if \(f_k \) is differentiable at \(c \) for \(k = 1, 2, \ldots, n \).

Definition If \(f_k : \mathbb{R}^m \to \mathbb{R} \) is the \(k \)th coordinate function of \(f : \mathbb{R}^m \to \mathbb{R}^n \), then we say \(f \) is \(C^1 \) on an open set \(U \) if \(f_k \) is \(C^1 \) on \(U \) for \(k = 1, 2, \ldots, n \).

Putting our results in Section 3.3 together with the previous proposition and definition, we have the following basic result.

Theorem If \(f : \mathbb{R}^m \to \mathbb{R}^n \) is \(C^1 \) on an open ball containing the point \(c \), then \(f \) is differentiable at \(c \).

Suppose \(f : \mathbb{R}^m \to \mathbb{R}^n \) is differentiable at \(c = (c_1, c_2, \ldots, c_m) \) with best affine approximation \(A \) and \(f_k : \mathbb{R}^m \to \mathbb{R} \) and \(A_k : \mathbb{R}^m \to \mathbb{R} \) are the coordinate functions of \(f \) and \(A \), respectively, for \(k = 1, 2, \ldots, n \). Since \(A_k \) is the best affine approximation to \(f_k \) at \(c \), we know from Section 3.3 that
\[
A_k(x) = \nabla f_k(c) \cdot (x - c) + f_k(c)
\]
for all \(x \) in \(\mathbb{R}^m \). Hence, writing the vectors as column vectors, we have
\[
A(x) = \begin{bmatrix}
A_1(x) \\
A_2(x) \\
\vdots \\
A_n(x)
\end{bmatrix} = \begin{bmatrix}
\nabla f_1(c) \cdot (x - c) + f_1(c) \\
\nabla f_2(c) \cdot (x - c) + f_2(c) \\
\vdots \\
\nabla f_n(c) \cdot (x - c) + f_n(c)
\end{bmatrix}
\]
Section 4.2 Best Affine Approximations

\[
\begin{bmatrix}
\frac{\partial}{\partial x_1} f_1(c) & \frac{\partial}{\partial x_2} f_1(c) & \cdots & \frac{\partial}{\partial x_m} f_1(c) \\
\frac{\partial}{\partial x_1} f_2(c) & \frac{\partial}{\partial x_2} f_2(c) & \cdots & \frac{\partial}{\partial x_m} f_2(c) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial}{\partial x_1} f_n(c) & \frac{\partial}{\partial x_2} f_n(c) & \cdots & \frac{\partial}{\partial x_m} f_n(c)
\end{bmatrix}
\begin{bmatrix}
x_1 - c_1 \\
x_2 - c_2 \\
\vdots \\
x_m - c_m
\end{bmatrix}
+ \begin{bmatrix}
f_1(c) \\
f_2(c) \\
\vdots \\
f_m(c)
\end{bmatrix}. \quad (4.2.8)
\]

It follows that the \(n \times m\) matrix in (4.2.8) is the derivative of \(f\).

Theorem If \(f : \mathbb{R}^m \to \mathbb{R}^n\) is differentiable at a point \(c\), then the derivative of \(f\) at \(c\) is given by

\[
Df(c) = \begin{bmatrix}
\frac{\partial}{\partial x_1} f_1(c) & \frac{\partial}{\partial x_2} f_1(c) & \cdots & \frac{\partial}{\partial x_m} f_1(c) \\
\frac{\partial}{\partial x_1} f_2(c) & \frac{\partial}{\partial x_2} f_2(c) & \cdots & \frac{\partial}{\partial x_m} f_2(c) \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial}{\partial x_1} f_n(c) & \frac{\partial}{\partial x_2} f_n(c) & \cdots & \frac{\partial}{\partial x_m} f_n(c)
\end{bmatrix}. \quad (4.2.9)
\]

We call the matrix in (4.2.9) the *Jacobian matrix* of \(f\), after the German mathematician Carl Gustav Jacob Jacobi (1804-1851). Note that we have seen this matrix before in our discussion of change of variables in integrals in Section 3.7.

Example Consider the function \(f : \mathbb{R}^3 \to \mathbb{R}^2\) defined by

\[f(x, y, z) = (xyz, 3x - 2yz).\]

The coordinate functions of \(f\) are

\[f_1(x, y, z) = xyz\]

and

\[f_2(x, y, z) = 3x - 2yz.\]

Now

\[\nabla f_1(x, y, z) = (yz, xz, xy)\]

and

\[\nabla f_2(x, y, z) = (3, -2z, -2y),\]

so the Jacobian of \(f\) is

\[Df(x, y, z) = \begin{bmatrix} yz & xz & xy \\ 3 & -2z & -2y \end{bmatrix}.\]

Hence, for example,

\[Df(1, 2, -1) = \begin{bmatrix} -2 & -1 & 2 \\ 3 & 2 & -4 \end{bmatrix}.\]
Since \(f(1,2,-1) = (-2,7) \), the best affine approximation to \(f \) at \((1,2,-1)\) is
\[
A(x,y,z) = \begin{bmatrix}
-2 & -1 & 2 \\
3 & 2 & -4 \\
\end{bmatrix}
\begin{bmatrix}
x - 1 \\
y - 2 \\
z + 1 \\
\end{bmatrix}
+ \begin{bmatrix}
-2 \\
-7 \\
\end{bmatrix}
= \begin{bmatrix}
-2(x - 1) - (y - 2) + 2(z + 1) - 2 \\
3(x - 1) + 2(y - 2) - 4(z + 1) + 7 \\
-2x - y + 2z + 4 \\
3x + 2y - 4z - 4 \\
\end{bmatrix}.
\]

Tangent planes
Suppose \(f : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) parametrizes a surface \(S \) in \(\mathbb{R}^3 \). If \(f_1, f_2, \) and \(f_3 \) are the coordinate functions of \(f \), then the best affine approximation to \(f \) at a point \((s_0,t_0)\) is given by
\[
A(s,t) = \begin{bmatrix}
\frac{\partial}{\partial s} f_1(t_0,s_0) & \frac{\partial}{\partial t} f_1(t_0,s_0) \\
\frac{\partial}{\partial s} f_2(t_0,s_0) & \frac{\partial}{\partial t} f_2(t_0,s_0) \\
\frac{\partial}{\partial s} f_3(t_0,s_0) & \frac{\partial}{\partial t} f_3(t_0,s_0) \\
\end{bmatrix}
\begin{bmatrix}
s - s_0 \\
t - t_0 \\
\end{bmatrix}
+ \begin{bmatrix}
f_1(s_0,t_0) \\
f_2(s_0,t_0) \\
f_3(s_0,t_0) \\
\end{bmatrix}.
\]
(4.2.10)

If the vectors
\[
v = \begin{bmatrix}
\frac{\partial}{\partial s} f_1(s_0,t_0) \\
\frac{\partial}{\partial s} f_2(s_0,t_0) \\
\frac{\partial}{\partial s} f_3(s_0,t_0) \\
\end{bmatrix}
\]
(4.2.11)
and
\[
w = \begin{bmatrix}
\frac{\partial}{\partial t} f_1(s_0,t_0) \\
\frac{\partial}{\partial t} f_2(s_0,t_0) \\
\frac{\partial}{\partial t} f_3(s_0,t_0) \\
\end{bmatrix}
\]
(4.2.12)
are linearly independent, then (4.2.10) implies that the image of \(A \) is a plane in \(\mathbb{R}^3 \) which passes through the point \(f(s_0,t_0) \) on the surface \(S \). Moreover, if we let \(C_1 \) be the curve
on \(S \) through the point \(f(s_0, t_0) \) parametrized by \(\varphi_1(s) = f(s, t_0) \) and \(C_2 \) be the curve on \(S \) through the point \(f(s_0, t_0) \) parametrized by \(\varphi_2(t) = f(s_0, t) \), then \(v \) is tangent to \(C_1 \) at \(f(s_0, t_0) \) and \(w \) is tangent to \(C_2 \) at \(f(s_0, t_0) \). Hence we call the image of \(A \) the tangent plane to the surface \(S \) at the point \(f(s_0, t_0) \).

Example Let \(T \) be the torus parametrized by

\[
f(s, t) = ((3 + \cos(t)) \cos(s), (3 + \cos(t)) \sin(s), \sin(t))
\]

for \(0 \leq s \leq 2\pi \) and \(0 \leq t \leq 2\pi \). Then

\[
Df(s, t) = \begin{bmatrix}
-3 - \cos(t) & -\sin(t) \\
3 \cos(t) & -\sin(t) \\
0 & \cos(t)
\end{bmatrix}
\]

Thus, for example,

\[
Df\left(\frac{\pi}{2}, \frac{\pi}{4}\right) = \begin{bmatrix}
- \left(3 + \frac{1}{\sqrt{2}}\right) & 0 \\
0 & -\frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}}
\end{bmatrix}
\]

Since

\[
f\left(\frac{\pi}{2}, \frac{\pi}{4}\right) = \left(0, 3 + \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),
\]

the best affine approximation to \(f \) at \(\left(\frac{\pi}{2}, \frac{\pi}{4}\right) \) is

\[
A(s, t) = \begin{bmatrix}
- \left(3 + \frac{1}{\sqrt{2}}\right) & 0 \\
0 & -\frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}}
\end{bmatrix}
\left(\begin{bmatrix}
s - \frac{\pi}{2} \\
t - \frac{\pi}{4}
\end{bmatrix}
\right) + \begin{bmatrix}
0 & 3 + \frac{1}{\sqrt{2}} \\
0 & \frac{1}{\sqrt{2}}
\end{bmatrix}
\left(\begin{bmatrix}
s - \frac{\pi}{2} \\
t - \frac{\pi}{4}
\end{bmatrix}
\right).
\]

Hence

\[
x = - \left(3 + \frac{1}{\sqrt{2}}\right) \left(s - \frac{\pi}{2}\right),
\]

\[
y = -\frac{1}{\sqrt{2}} \left(t - \frac{\pi}{4}\right) + 3 + \frac{1}{\sqrt{2}},
\]

\[
z = \frac{1}{\sqrt{2}} \left(t - \frac{\pi}{4}\right) + \frac{1}{\sqrt{2}}.
\]
Best Affine Approximations

Section 4.2

are parametric equations for the plane \(P \) tangent to \(T \) at \(\left(0, 3 + \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right) \). See Figure 4.2.1.

Chain rule

We are now in a position to state the chain rule in its most general form. Consider functions \(g : \mathbb{R}^m \to \mathbb{R}^q \) and \(f : \mathbb{R}^q \to \mathbb{R}^n \) and suppose \(g \) is differentiable at \(c \) and \(f \) is differentiable at \(g(c) \). Let \(h : \mathbb{R}^m \to \mathbb{R}^n \) be the composition \(h(x) = f(g(x)) \) and denote the coordinate functions of \(f \), \(g \), and \(h \) by \(f_i, g_j, \) and \(h_k \), respectively. Then, for \(k = 1, 2, \ldots, n \),

\[
 h_k(x_1, x_2, \ldots, x_m) = f_k(g_1(x_1, x_2, \ldots, x_m), g_2(x_1, x_2, \ldots, x_m), \ldots, g_q(x_1, x_2, \ldots, x_m)).
\]

Now if we fix \(m - 1 \) of the variables \(x_1, x_2, \ldots, x_m \) say, all but \(x_j \), then \(h_k \) is the composition of a function from \(\mathbb{R} \) to \(\mathbb{R}^q \) with a function from \(\mathbb{R}^q \) to \(\mathbb{R} \). Thus we may use the chain rule from Section 3.3 to compute \(\frac{\partial}{\partial x_j} h_k(c) \), namely,

\[
 \frac{\partial}{\partial x_j} h_k(c) = \nabla f_k(g(c)) \cdot \left(\frac{\partial}{\partial x_j} g_1(c), \frac{\partial}{\partial x_j} g_2(c), \ldots, \frac{\partial}{\partial x_j} g_q(c) \right) \\
 = \frac{\partial}{\partial x_1} f_k(g(c)) \frac{\partial}{\partial x_j} g_1(c) + \frac{\partial}{\partial x_2} f_k(g(c)) \frac{\partial}{\partial x_j} g_2(c) + \cdots + \frac{\partial}{\partial x_q} f_k(g(c)) \frac{\partial}{\partial x_j} g_q(c). \tag{4.2.13}
\]

Hence \(\frac{\partial}{\partial x_j} h_k(c) \) is equal to the dot product of the \(k \)th row of \(Df(g(c)) \) with the \(j \)th column of \(Dg(c) \). Moreover, if \(g \) is \(C^1 \) on an open ball about \(c \) and \(f \) is \(C^1 \) on an open ball about \(g(c) \), then (4.2.13) shows that \(\frac{\partial}{\partial x_j} h_k \) is continuous on an open ball about \(c \). It follows from our results in Section 3.3 that \(h \) is differentiable at \(c \). Since \(\frac{\partial}{\partial x_j} h_k \) is the entry in the \(k \)th row and \(j \)th column of \(Dh(c) \), (4.2.13) implies \(Dh(c) = Df(g(c))Dg(c) \). This result, the chain rule, may be proven without assuming that \(f \) and \(g \) are both \(C^1 \), and so we state the more general result in the following theorem.

Figure 4.2.1 Torus with a tangent plane
Chain Rule If \(g : \mathbb{R}^m \to \mathbb{R}^q \) is differentiable at \(c \) and \(f : \mathbb{R}^q \to \mathbb{R}^n \) is differentiable at \(g(c) \), then \(f \circ g \) is differentiable at \(c \) and
\[
D(f \circ g)(c) = Df(g(c))Dg(c).
\] (4.2.14)

Equivalently, the chain rule says that if \(A \) is the best affine approximation to \(g \) at \(c \) and \(B \) is the best affine approximation to \(f \) at \(g(c) \), then \(B \circ A \) is the best affine approximation to \(f \circ g \) at \(c \). That is, the best affine approximation to a composition of functions is the composition of the individual best affine approximations.

Example Suppose \(g : \mathbb{R}^2 \to \mathbb{R}^3 \) is defined by
\[
g(s, t) = (\cos(s) \sin(t), \sin(s) \sin(t), \cos(t))
\]
and \(f : \mathbb{R}^3 \to \mathbb{R}^2 \) is defined by
\[
f(x, y, z) = (10xyz, x^2 - yz).
\]

Then
\[
Dg(s, t) = \begin{bmatrix}
-\sin(s) \sin(t) & \cos(s) \cos(t) \\
\cos(s) \sin(t) & \sin(s) \cos(t) \\
0 & -\sin(t)
\end{bmatrix}
\]
and
\[
Df(x, y, z) = \begin{bmatrix}
10yz & 10xz & 10xy \\
2x & -z & -y
\end{bmatrix}.
\]

Let \(h(s, t) = f(g(s, t)) \). To find \(Dh \left(\frac{\pi}{4}, \frac{\pi}{4} \right) \), we first note that
\[
g \left(\frac{\pi}{4}, \frac{\pi}{4} \right) = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}} \right),
\]

\[
Dg \left(\frac{\pi}{4}, \frac{\pi}{4} \right) = \begin{bmatrix}
-\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
0 & -\frac{1}{\sqrt{2}}
\end{bmatrix}
\]
and
\[
Df \left(g \left(\frac{\pi}{4}, \frac{\pi}{4} \right) \right) = Df \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}} \right) = \begin{bmatrix}
\frac{5}{\sqrt{2}} & \frac{5}{\sqrt{2}} & \frac{5}{2} \\
\sqrt{2} & -\frac{1}{\sqrt{2}} & -\frac{1}{2}
\end{bmatrix}.
\]
Thus

\[
Dh \left(\frac{\pi}{4}, \frac{\pi}{4} \right) = Df \left(g \left(\frac{\pi}{4}, \frac{\pi}{4} \right) \right) Dg \left(\frac{\pi}{4}, \frac{\pi}{4} \right)
\]

\[
= \begin{bmatrix}
\frac{5}{\sqrt{2}} & \frac{2}{\sqrt{2}} & 0 \\
\frac{2}{\sqrt{2}} & \frac{5}{\sqrt{2}} & 0 \\
1 & -1 & 0
\end{bmatrix}
\begin{bmatrix}
-\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} \\
0 & -1
\end{bmatrix}
\]

\[
= \begin{bmatrix}
0 & \frac{5}{2\sqrt{2}} \\
-\frac{1+\sqrt{2}}{2\sqrt{2}} & \frac{1}{2}
\end{bmatrix}
\]

Problems

1. Find the best affine approximation for each of the following functions at the specified point \(c \).
 (a) \(f(x, y) = (x^2 + y^2, 3xy), \ c = (1, 2) \)
 (b) \(g(x, y, z) = (\sin(x + y + z), xy \cos(z)), \ c = (0, \frac{\pi}{4}, \frac{\pi}{4}) \)
 (c) \(h(s, t) = (3s^2 + t, s - t, 4st^2, 4t - s), \ c = (-1, 3) \)

2. Each of the following functions parametrizes a surface \(S \) in \(\mathbb{R}^3 \). In each case, find parametric equations for the tangent plane \(P \) passing through the point \(f(s_0, t_0) \). Plot \(S \) and \(P \) together.
 (a) \(f(s, t) = (t \cos(s), t \sin(s), t), \ (s_0, t_0) = \left(\frac{\pi}{2}, 2 \right) \)
 (b) \(f(s, t) = (t^2 \cos(s), t^2, t^2 \sin(s)), \ (s_0, t_0) = (0, 1) \)
 (c) \(f(s, t) = (\cos(s) \sin(t), \sin(s) \sin(t), \cos(t)), \ (s_0, t_0) = \left(\frac{\pi}{2}, \frac{\pi}{4} \right) \)
 (d) \(f(s, t) = (3 \cos(s) \sin(t), \sin(s) \sin(t), 2 \cos(t)), \ (s_0, t_0) = \left(\frac{\pi}{4}, \frac{\pi}{4} \right) \)
 (e) \(f(s, t) = ((4 + 2 \cos(t)) \cos(s), (4 + 2 \cos(t)) \sin(s), 2 \sin(t)), \ (s_0, t_0) = \left(\frac{3\pi}{4}, \frac{\pi}{4} \right) \)

3. Let \(S \) be the graph of a function \(f : \mathbb{R}^2 \to \mathbb{R} \). Define the function \(F : \mathbb{R}^2 \to \mathbb{R}^3 \) by \(F(s, t) = (s, t, f(s, t)) \). We may find an equation for the plane tangent to \(S \) at \((s_0, t_0, f(s_0, t_0)) \) using either the techniques of Section 3.3 (looking at \(S \) as the graph of \(f \)) or the techniques of this section (looking at \(S \) as a surface parametrized by \(F \)). Verify that these two approaches yield equations for the same plane, both in the special case when \(f(s, t) = s^2 + t^2 \) and \((s_0, t_0) = (1, 2) \), and in the general case.

4. Use the chain rule to find the derivative of \(f \circ g \) at the point \(c \) for each of the following.
 (a) \(f(x, y) = (x^2 + y^2, x - y), \ g(s, t) = (3st, s^2 - 4t), \ c = (1, -2) \)
 (b) \(f(x, y, z) = (4xy, 3xz), \ g(s, t) = \left(st^2 - 4t, s^2, \frac{4}{st} \right), \ c = (-2, 3) \)
 (c) \(f(x, y) = (3x + 4y, 2x^2y, x - y), \ g(s, t, u) = (4s - 3t + u, 5st^2), \ c = (1, -2, 3) \)
5. Suppose
\[x = f(u, v), \]
\[y = g(u, v), \]
and
\[u = h(s, t), \]
\[v = k(s, t). \]

(a) Show that
\[\frac{\partial x}{\partial s} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial s} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial s} \]
and
\[\frac{\partial x}{\partial t} = \frac{\partial f}{\partial u} \frac{\partial u}{\partial t} + \frac{\partial f}{\partial v} \frac{\partial v}{\partial t}. \]

(b) Find similar expressions for \[\frac{\partial y}{\partial s} \] and \[\frac{\partial y}{\partial t}. \]

6. Use your results in Problem 5 to find \[\frac{\partial x}{\partial s}, \frac{\partial x}{\partial t}, \frac{\partial y}{\partial s}, \text{ and } \frac{\partial y}{\partial t} \]
when
\[x = u^2 v, \]
\[y = 3u - v, \]
and
\[u = 4t^2 - s^2, \]
\[v = \frac{4t}{s}. \]

7. Suppose \(T \) is a function of \(x \) and \(y \) where
\[x = r \cos(\theta), \]
\[y = r \sin(\theta). \]

Show that
\[\frac{\partial T}{\partial r} = \frac{\partial T}{\partial x} \cos(\theta) + \frac{\partial T}{\partial y} \sin(\theta) \]
and
\[\frac{\partial T}{\partial \theta} = -r \frac{\partial T}{\partial x} \sin(\theta) + r \frac{\partial T}{\partial y} \cos(\theta). \]

8. Suppose the temperature at a point \((x, y)\) in the plane is given by
\[T = 100 - \frac{20}{\sqrt{1 + x^2 + y^2}}. \]

(a) If \((r, \theta)\) represents the polar coordinates of \((x, y)\), use Problem 7 to find \[\frac{\partial T}{\partial r} \] and \[\frac{\partial T}{\partial \theta} \] when \(r = 4 \) and \(\theta = \frac{\pi}{6}. \)

(b) Show that \[\frac{\partial T}{\partial \theta} = 0 \] for all values of \(r \) and \(\theta \). Can you explain this result geometrically?
9. Let T be the torus parametrized by

$$
\begin{align*}
 x &= (4 + 2 \cos(t)) \cos(s), \\
 y &= (4 + 2 \cos(t)) \sin(s), \\
 z &= 2 \sin(t),
\end{align*}
$$

for $0 \leq s \leq 2\pi$ and $0 \leq t \leq 2\pi$.

(a) If U is a function of x, y, and z, find general expressions for $\frac{\partial U}{\partial s}$ and $\frac{\partial U}{\partial t}$.

(b) Suppose

$$
U = 80 - 40e^{-\frac{1}{20}(x^2+y^2+z^2)}
$$

gives the temperature at a point (x, y, z) on T. Find expressions for $\frac{\partial U}{\partial s}$ and $\frac{\partial U}{\partial t}$ in this case. What is the geometrical interpretation of these quantities?

(c) Evaluate $\frac{\partial U}{\partial s}$ and $\frac{\partial U}{\partial t}$ in the particular case $s = \frac{\pi}{4}$ and $t = \frac{\pi}{4}$.