7.1 Notation and terminology

If \(S \) is a set of complex numbers and \(f : S \to \mathbb{C} \) is defined for all \(z \in S \), we call \(S \) the domain of \(f \). Note that the domain of a function \(f \) need not be a domain. As is customary, when a domain is not specified for a function \(f \), it is assumed to be the largest possible set for which \(f \) is defined.

Example 7.1. The domain of

\[
f(z) = \frac{1}{z^2 + 1}
\]

is

\[
S = \{ z \in \mathbb{C} : z \neq \pm i \}.
\]

If \(f : S \to \mathbb{C} \), then \(f(z) \) is a complex number and so we may write

\[
f(z) = u + iv
\]

for real numbers \(u \) and \(v \) which depend on \(z \). Now \(z = x + iy \) for some real numbers \(x \) and \(y \), so in fact \(u \) and \(v \) are functions of real numbers \(x \) and \(y \). That is, we may write

\[
f(z) = f(x + iy) = u(x, y) + iv(x, y),
\]

where \(u \) and \(v \) are real-valued functions of two real variables. If instead we write \(z \) in polar coordinates, say, \(z = re^{i\theta} \), then we may write

\[
f(z) = f(re^{i\theta}) = u(r, \theta) + iv(r, \theta).
\]
Example 7.2. If \(f(z) = z^3 \), then
\[
f(x + iy) = (x + iy)^3 = x^3 + 3x^2(iy) + 3x(iy)^2 + (iy)^3 = (x^3 - 3xy^2) + i(3x^2y - y^3),
\]
so
\[
u(x, y) = x^3 - 3xy^2
\]
and
\[
v(x, y) = 3x^2y - y^3.
\]
In polar coordinates,
\[
f(re^{i\theta}) = r^3(\cos(3\theta) + i\sin(3\theta)),
\]
so
\[
u(r, \theta) = r^3 \cos(3\theta)
\]
and
\[
v(r, \theta) = r^3 \sin(3\theta).
\]

Definition 7.1. Given complex numbers \(a_0, a_1, \ldots, a_n \), with \(a_n \neq 0 \), we call
\[
P(z) = a_0 + a_1z + a_2z^2 + \ldots + a_nz^n
\]
a polynomial of degree \(n \). If \(P \) and \(Q \) are polynomials, we call
\[
R(z) = \frac{P(z)}{Q(z)}
\]
a rational function.

In some instances we will need to consider a relationship which associates multiple values with a given input value, as illustrated in the following example.

Example 7.3. Recall that if \(z = re^{i\theta} \in \mathbb{C} \), \(z \neq 0 \) and \(-\pi < \theta \leq \pi\), then the two square roots of \(z \) are
\[
c_0 = \sqrt{re^{i\theta}}
\]
and
\[
c_1 = \sqrt{re^{i(\theta + \pi)}}
\]
Figure 7.1: Plot of the imaginary part of the principal square root of z

\[z^{\frac{1}{2}} = \pm \sqrt{re^{i\theta}}. \]

We say that $z^{\frac{1}{2}}$ is a *multi-valued function*. We may create a function (that is, a *single-valued* function) $f : \mathbb{C} \rightarrow \mathbb{C}$ from this multi-valued function by defining $f(0) = 0$ and

\[f(z) = \sqrt{re^{i\theta}} \]

for $z = re^{i\theta}$, where $r > 0$ and $-\pi < \theta \leq \pi$. The plot in Figure 7.1 displays the imaginary part of $f(z)$, the blue curve illustrating the curve on the surface above the unit circle. Note the split in the surface along the negative real axis.