12.1 The derivative

Definition 12.1. Suppose f is defined on a neighborhood of a point $z_0 \in \mathbb{C}$. We say f is differentiable at z_0 if

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists, in which case we call

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

the derivative of f at z_0.

Note that, letting $\Delta z = z - z_0$, we could also write

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}.$$

Moreover, if we let $w = f(z)$ and $\Delta w = f(z + \Delta z) - f(z)$, then we may write

$$f'(z) = \lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} = \frac{dw}{dz}.$$
Example 12.1. Suppose $f(z) = z^n$, where n is a positive integer. Then

$$f(z + \Delta z) - f(z) = (z + \Delta z)^n - z^n$$

$$= (z^n + nz^{n-1}\Delta z + \cdots + nz(\Delta z)^{n-1} + (\Delta z)^n) - z^n$$

$$= nz^{n-1}\Delta z + \cdots + nz(\Delta z)^{n-1} + (\Delta z)^n,$$

so

$$\frac{f(z + \Delta z) - f(z)}{\Delta z} = nz^{n-1} + \cdots + nz(\Delta z)^{n-2} + (\Delta z)^{n-1}.$$

Hence

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = nz^{n-1}.$$

Example 12.2. Let

$$f(z) = |z|^2 = zz^\ast.$$

Then

$$\frac{f(z + \Delta z) - f(z)}{\Delta z} = \frac{(z + \Delta z)(\bar{z} + \Delta \bar{z}) - zz^\ast}{\Delta z}$$

$$= \frac{z\Delta \bar{z} + \bar{z}\Delta z + \Delta z\Delta \bar{z}}{\Delta z}$$

$$= \frac{\bar{z} + \Delta \bar{z} + \Delta z}{\Delta z}.$$

It follows that

$$\frac{f(z + \Delta z) - f(z)}{\Delta z} \to \bar{z} + z$$

as $\Delta z \to 0$ along the real axis and

$$\frac{f(z + \Delta z) - f(z)}{\Delta z} \to \bar{z} - z$$

as $\Delta z \to 0$ along the imaginary axis. Hence f is not differentiable at any $z \neq 0$. If $z = 0$, then

$$\lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta z}{\Delta z} = 0,$$

and so $f'(0) = 0$. Note that if we write $f(x + iy) = u(x, y) + iv(x, y)$, then

$$u(x, y) = x^2 + y^2.$$
and
\[v(x, y) = 0. \]
Hence \(u \) and \(v \) have continuous partial derivatives of all order. This shows that the differentiability of \(u \) and \(v \) does not imply that \(f \) is differentiable. Moreover, note that this also shows that a function may be continuous at a point without being differentiable at that point.

Proposition 12.1. If \(f \) is differentiable at \(z_0 \), then \(f \) is continuous at \(z_0 \).

Proof. We need to show that
\[\lim_{z \to z_0} f(z) = f(z_0), \]
or, equivalently, that
\[\lim_{z \to z_0} (f(z) - f(z_0)) = 0. \]
The latter follows from
\[
\lim_{z \to z_0} (f(z) - f(z_0)) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} (z - z_0) \\
= \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \lim_{z \to z_0} (z - z_0) \\
= f'(z_0)(0) \\
= 0.
\]

\[\square \]

12.2 Differentiation formulas

Proposition 12.2. If \(c \in \mathbb{C} \) and \(f(z) = c \) for all \(c \in \mathbb{C} \), then \(f'(z) = 0 \) for all \(z \in \mathbb{C} \).

Proof. We have
\[
f'(z) = \lim_{w \to z} \frac{f(w) - f(z)}{w - z} = \lim_{w \to z} \frac{c - c}{w - z} = 0.
\]

\[\square \]
Proposition 12.3. If $c \in \mathbb{C}$ and f is differentiable at z, then
\[
\frac{d}{dz}(cf(z)) = cf'(z).
\]

Proof. We have
\[
\frac{d}{dz}(cf(z)) = \lim_{w \to z} \frac{cf(w) - cf(z)}{w - z} = c \lim_{w \to z} \frac{f(w) - f(z)}{w - z} = cf'(z).
\]

Proposition 12.4. If f and g are both differentiable at z, then
\[
\frac{d}{dz}(f(z) + g(z)) = f'(z) + g'(z),
\]
\[
\frac{d}{dz}f(z)g(z) = f(z)g'(z) + g(z)f'(z),
\]
and, if $g(z) \neq 0$,
\[
\frac{d}{dz} \frac{f(z)}{g(z)} = \frac{g(z)f'(z) - f(z)g'(z)}{(g(z))^2}.
\]

Proof. For the first statement, we have
\[
\frac{d}{dz}(f(z) + g(z)) = \lim_{w \to z} \frac{(f(w) + g(w)) - (f(z) + g(z))}{w - z}
\]
\[
= \lim_{w \to z} \left(\frac{f(w) - f(z)}{w - z} + \frac{g(w) - g(z)}{w - z} \right)
\]
\[
= f'(z) + g'(z).
\]

For the second,
\[
\frac{d}{dz}f(z)g(z) = \lim_{w \to z} \frac{f(w)g(w) - f(z)g(z)}{w - z}
\]
\[
= \lim_{w \to z} \frac{f(w)g(w) - f(z)g(w) + f(z)g(w) - f(z)g(z)}{w - z}
\]
\[
= \lim_{w \to z} \left(g(w) \frac{f(w) - f(z)}{w - z} + f(z) \frac{g(w) - g(z)}{w - z} \right)
\]
\[
= g(z)f'(z) + f(z)g'(z).
\]
And for the third,
\[
\frac{d}{dz} f(z) = \lim_{w \to z} \frac{f(w) - f(z)}{g(w) - g(z)}
\]
\[
= \lim_{w \to z} \frac{f(w)g(z) - f(z)g(w)}{g(w)g(z)(w - z)}
\]
\[
= \lim_{w \to z} \frac{f(w)g(z) - f(z)g(z) + f(z)g(z) - f(z)g(w)}{g(w)g(z)(w - z)}
\]
\[
= \lim_{w \to z} \frac{g(z)\left(f(w) - f(z) - f(z)\frac{g(w) - g(z)}{w - z}\right)}{g(w)g(z)}
\]
\[
= \frac{g(z)f'(z) - f(z)g'(z)}{(g(z))^2}.
\]

\[\square\]

Proposition 12.5. If \(f \) is differentiable at \(z_0 \) and \(g \) is differentiable at \(f(z_0) \), then
\[
(g \circ f)'(z_0) = g'(f(z_0))f'(z_0).
\]

Proof. Let \(w_0 = f(z_0) \) and choose \(\epsilon > 0 \) so that \(g \) is defined on the \(\epsilon \) neighborhood of \(w_0 \). Call this neighborhood \(W \). For \(w \in W \), define
\[
\Phi(w) = \begin{cases}
 \frac{g(w) - g(w_0)}{w - w_0} - g'(w_0), & \text{if } w \neq w_0, \\
 0, & \text{if } w = w_0.
\end{cases}
\]
Note that
\[
\lim_{w \to w_0} \Phi(w) = g'(w_0) - g'(w_0) = 0 = \Phi(w_0),
\]
so \(\Phi \) is continuous at \(w_0 \). It also follows that
\[
g(w) - g(w_0) = (g'(w_0) + \Phi(w))(w - w_0)
\]
for all \(w \in W \). Now choose \(\delta > 0 \) so that \(f \) is defined for all \(z \) in the \(\delta \) neighborhood of \(z_0 \) and \(f(z) \in W \) whenever \(z \) is in this neighborhood (such a \(\delta \) exists because \(f \) is continuous at \(z_0 \)). Call this neighborhood \(U \). We then have that
\[
g(f(z)) - g(f(z_0)) = (g'(f(z_0)) + \Phi(f(z)))(f(z) - f(z_0))
\]
for all $z \in U$. Hence we have

$$(g \circ f)'(z_0) = \lim_{z \to z_0} \frac{g(f(z)) - g(f(z_0))}{z - z_0}$$

$$= \lim_{z \to z_0} (g'(f(z_0)) + \Phi(f(z))) \frac{f(z) - f(z_0)}{z - z_0}$$

$$= g'(f(z_0))f'(z_0).$$