Implicit Differentiation
Mathematics 11: Lecture 19

Dan Sloughter
Furman University

October 12, 2007
Example

Let $y = x^{\frac{2}{3}}$.

Then $y^3 = x^2$.

Differentiating both sides of this expression with respect to x gives us $\frac{d}{dx} y^3 = \frac{d}{dx} x^2$.

Treating y as a function of x, and remembering the chain rule, we have $3y^2 \frac{dy}{dx} = 2x$.

Hence $\frac{dy}{dx} = \frac{2x}{3y^2}$.

$y^3 = x^2$.
Example

- Let $y = x^{\frac{2}{3}}$.
- Then $y^3 = x^2$.
Example

- Let \(y = x^{\frac{2}{3}} \).
- Then \(y^3 = x^2 \).
- Differentiating both sides of this expression with respect to \(x \) gives us
 \[
 \frac{d}{dx} y^3 = \frac{d}{dx} x^2.
 \]
 Treating \(y \) as a function of \(x \), and remembering the chain rule, we have
 \[
 3y^2 \frac{dy}{dx} = 2x,
 \]
 hence
 \[
 \frac{dy}{dx} = \frac{2x}{3y^2}.
 \]
Example

Let $y = x^{\frac{2}{3}}$.
Then $y^3 = x^2$.
Differentiating both sides of this expression with respect to x gives us

$$\frac{d}{dx} y^3 = \frac{d}{dx} x^2.$$

Treating y as a function of x, and remembering the chain rule, we have

$$3y^2 \frac{dy}{dx} = 2x,$$
Example

- Let $y = x^{\frac{2}{3}}$.
- Then $y^3 = x^2$.
- Differentiating both sides of this expression with respect to x gives us
 \[\frac{d}{dx} y^3 = \frac{d}{dx} x^2. \]
- Treating y as a function of x, and remembering the chain rule, we have
 \[3y^2 \frac{dy}{dx} = 2x, \]
- Hence
 \[\frac{dy}{dx} = \frac{2x}{3y^2} = \frac{2}{3}xy^{-2}. \]
Example (cont’d)

- Now $y = x^{\frac{2}{3}}$, so

$$y^{-2} = \left(x^{\frac{2}{3}}\right)^{-2} = x^{-\frac{4}{3}}.$$
Example (cont’d)

▶ Now $y = x^{\frac{2}{3}}$, so

$$y^{-2} = \left(x^{\frac{2}{3}}\right)^{-2} = x^{-\frac{4}{3}}.$$

▶ Thus

$$\frac{dy}{dx} = \frac{2}{3} xx^{-\frac{4}{3}} = \frac{2}{3} x^{-\frac{1}{3}} = \frac{2}{3x^{\frac{1}{3}}}.$$

Note: this shows that $\frac{d}{dx} x^{\frac{2}{3}} = \frac{2}{3} x^{-\frac{1}{3}}$, which agrees with our previous rule for differentiating x^n when n is an integer.
Example (cont’d)

- Now \(y = x^{2/3} \), so
 \[
y^{-2} = \left(x^{2/3}\right)^{-2} = x^{-4/3}.
 \]

- Thus
 \[
 \frac{dy}{dx} = \frac{2}{3}x^{-4/3} = \frac{2}{3}x^{-1/3} = \frac{2}{3x^{1/3}}.
 \]

- Note: this shows that
 \[
 \frac{d}{dx} x^{2/3} = \frac{2}{3}x^{-1/3} = \frac{2}{3}x^{2/3-1},
 \]
 which agrees with our previous rule for differentiating \(x^n \) when \(n \) is an integer.
If n is a rational number, then

$$\frac{d}{dx} x^n = nx^{n-1}.$$
Proof

▶ Let \(n = \frac{p}{q} \), where \(p \) and \(q \) are integers. If \(y = x^{\frac{p}{q}} \), then \(y^q = x^p \).

Differentiating both sides with respect to \(x \), we have

\[
qy^{q-1}\frac{dy}{dx} - 1 = px^{p-1}
\]

Thus

\[
\frac{dy}{dx} = \frac{p}{q} x^{\frac{p}{q} - 1} y^{\frac{1}{q} - \frac{1}{1}} = \frac{p}{q} x^{\frac{p}{q} - 1} x^{\frac{q}{q} - \frac{p}{q}} = \frac{p}{q} x^{\frac{p}{q}} - 1 = nx^{n - 1}.
\]
Proof

- Let $n = \frac{p}{q}$, where p and q are integers. If $y = x^{\frac{p}{q}}$, then $y^q = x^p$.
- Differentiating both sides with respect to x, we have

$$qy^{q-1} \frac{dy}{dx} = px^{p-1}.$$
Proof

- Let $n = \frac{p}{q}$, where p and q are integers. If $y = x^{\frac{p}{q}}$, then $y^q = x^p$.
- Differentiating both sides with respect to x, we have

\[qy^{q-1} \frac{dy}{dx} = px^{p-1}. \]

- Thus

\[\frac{dy}{dx} = \frac{p}{q} x^{p-1} \frac{1}{y^{1-q}} \]

\[= \frac{p}{q} x^{p-1} x^{\frac{p}{q} - p} \frac{1}{q} \]

\[= \frac{p}{q} x^{\frac{p}{q} - 1} = nx^{n-1}. \]
If \(f(x) = \frac{1}{\sqrt{x^2 + 1}} \), then

\[
f'(x) = -\frac{1}{2}(1 + x^2)^{-\frac{3}{2}}(2x) = -\frac{x}{(1 + x^2)^{\frac{3}{2}}}.
\]
Implicit differentiation

The technique used to find the derivative of a rational power is useful in finding the slope of a curve defined by an equation, but not explicitly expressed as the graph of a function. We call this *implicit differentiation.*
Example

Consider the equation

\[x^2 + y^2 = 25. \]
Example

Consider the equation

\[x^2 + y^2 = 25. \]

The graph of this equation is the circle \(C \) of radius 5 centered at the origin.
Example

Consider the equation

$$x^2 + y^2 = 25.$$

The graph of this equation is the circle C of radius 5 centered at the origin.

Suppose we wish to find the slope of C at a point, say, the point $(3, 4)$.

Note: such an explicit expression would work for only some points on C since, overall, C is not the graph of a function.
Example

- Consider the equation
 \[x^2 + y^2 = 25. \]

- The graph of this equation is the circle C of radius 5 centered at the origin.

- Suppose we wish to find the slope of C at a point, say, the point $(3, 4)$.

- One way to proceed would be to solve for y explicitly in terms of x and then differentiate the resulting expression.
Example

Consider the equation

\[x^2 + y^2 = 25. \]

The graph of this equation is the circle \(C \) of radius 5 centered at the origin.

Suppose we wish to find the slope of \(C \) at a point, say, the point \((3, 4)\).

One way to proceed would be to solve for \(y \) explicitly in terms of \(x \) and then differentiate the resulting expression.

Note: such an explicit expression would work for only some points on \(C \) since, overall, \(C \) is not the graph of a function.
Example (cont’d)

- Graph of $x^2 + y^2 = 25$ with tangent line at $(3, 4)$:
Example (cont’d)

▶ Another approach: differentiate both sides of the expression,

\[
\frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(25),
\]

to obtain

\[
2x + 2y \frac{dy}{dx} = 0.
\]
Another approach: differentiate both sides of the expression,

\[
\frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(25),
\]

to obtain

\[
2x + 2y \frac{dy}{dx} = 0.
\]

Note that since we are differentiating with respect to \(x \), we treated \(y \) as a function of \(x \) and used the chain rule to differentiate \(y^2 \).
Another approach: differentiate both sides of the expression,

\[\frac{d}{dx}(x^2 + y^2) = \frac{d}{dx}(25), \]

to obtain

\[2x + 2y \frac{dy}{dx} = 0. \]

Note that since we are differentiating with respect to \(x \), we treated \(y \) as a function of \(x \) and used the chain rule to differentiate \(y^2 \).

Now we may solve for \(\frac{dy}{dx} \), obtaining

\[\frac{dy}{dx} = -\frac{x}{y}. \]
Example (cont’d)

- Evaluating at our point of interest, we have

\[
\left.\frac{dy}{dx}\right|_{(x,y)=(3,4)} = -\frac{3}{4}.
\]

So the equation of the line tangent to \(C\) at \((3,4)\) is

\[
y = -\frac{3}{4}(x-3) + 4.
\]

Note: our expression for \(\frac{dy}{dx}\) is valid only when \(y \neq 0\).

The lines tangent to \(C\) at the two points where \(y = 0\), namely, \((-5,0)\) and \((5,0)\) are vertical. Hence we should not expect to find derivatives at those points.
Example (cont’d)

- Evaluating at our point of interest, we have

\[
\left. \frac{dy}{dx} \right|_{(x,y)=(3,4)} = -\frac{3}{4}.
\]

- So the equation of the line tangent to \(C \) at (3, 4) is

\[
y = -\frac{3}{4}(x - 3) + 4.
\]
Example (cont’d)

► Evaluating at our point of interest, we have

\[
\frac{dy}{dx}\bigg|_{(x,y)=(3,4)} = -\frac{3}{4}.
\]

► So the equation of the line tangent to \(C \) at \((3, 4) \) is

\[
y = -\frac{3}{4}(x - 3) + 4.
\]

► Note: our expression for \(\frac{dy}{dx} \) is valid only when \(y \neq 0 \).
Evaluating at our point of interest, we have

\[\frac{dy}{dx} \bigg|_{(x,y)=(3,4)} = -\frac{3}{4}. \]

So the equation of the line tangent to \(C \) at \((3, 4)\) is

\[y = -\frac{3}{4}(x - 3) + 4. \]

Note: our expression for \(\frac{dy}{dx} \) is valid only when \(y \neq 0 \).

The lines tangent to \(C \) at the two points where \(y = 0 \), namely, \((-5, 0)\) and \((5, 0)\) are vertical.
Example (cont’d)

- Evaluating at our point of interest, we have
 \[\frac{dy}{dx} \bigg|_{(x,y)=(3,4)} = -\frac{3}{4}. \]

- So the equation of the line tangent to \(C \) at \((3,4)\) is
 \[y = -\frac{3}{4}(x - 3) + 4. \]

- Note: our expression for \(\frac{dy}{dx} \) is valid only when \(y \neq 0 \).
- The lines tangent to \(C \) at the two points where \(y = 0 \), namely, \((-5,0)\) and \((5,0)\) are vertical.
- Hence we should not expect to find derivatives at those points.
Example

Consider the curve C with equation

$$x^4 + y^5 + 4xy^2 = 25.$$
Example

Consider the curve C with equation

$$x^4 + y^5 + 4xy^2 = 25.$$

Differentiating both sides of this expression,

$$\frac{d}{dx}(x^4 + y^5 + 4xy^2) = \frac{d}{dx}(25),$$

gives us

$$4x^3 + 5y^4 \frac{dy}{dx} + 8xy \frac{dy}{dx} + 4y^2 = 0.$$
Example (cont’d)

- Solving for \(\frac{dy}{dx} \), we have

\[
\frac{dy}{dx} = -\frac{4x^3 + 4y^2}{5y^4 + 8xy}.
\]
Example (cont’d)

▶ Solving for $\frac{dy}{dx}$, we have

$$\frac{dy}{dx} = -\frac{4x^3 + 4y^2}{5y^4 + 8xy}.$$

▶ Now $(2, 1)$ is a point on C and

$$\left.\frac{dy}{dx}\right|_{(x,y)=(2,1)} = -\left(\frac{32 + 4}{5 + 16}\right) = -\left(\frac{36}{21}\right) = -\frac{12}{7}.$$
Example (cont’d)

- Solving for $\frac{dy}{dx}$, we have

$$\frac{dy}{dx} = -\frac{4x^3 + 4y^2}{5y^4 + 8xy}.$$

- Now $(2, 1)$ is a point on C and

$$\left.\frac{dy}{dx}\right|_{(x,y)=(2,1)} = -\frac{32 + 4}{5 + 16} = -\frac{36}{21} = -\frac{12}{7}.$$

- Hence the equation of the line tangent to C at $(2, 1)$ is

$$y = -\frac{12}{7}(x - 2) + 1.$$
Example (cont’d)

Graph of $x^4 + y^5 + 4xy^2 = 25$ with tangent line at $(2, 1)$: