§2.1–Unions and Intersections Of Open and Closed Sets

Tom Lewis

Fall Semester 2014

Open sets
Closed sets
Closed sets

Example

Let $\{q_i, i \in \mathbb{N}\}$ be a listing of the rational numbers in [0, 1]. Let $A_i = (q_i - 1/4^i, q_i + 1/4^i)$ and let

$$A=\bigcup_{i=1}^{\infty}A_i.$$

Is A open? Does A contain [0, 1]?

Open sets		Closed sets

Theorem

An arbitrary (finite, countable, or uncountable) union of open sets is open.

Problem

Construct an example to show that an infinite intersection of open sets need not be open.

Open sets

Closed sets

Theorem

The intersection of a finite number of open sets is open.

Theorem

An arbitrary (finite, countable, or uncountable) intersection of closed sets is closed.

Open sets

Closed sets

Theorem The union of a finite number of closed sets is closed.

Example (Cantor set) Let $C_0 = [0, 1], \ C_1 = [0, 1/3] \cup [2/3, 1]$, and

$$C_2 = \underbrace{[0, 1/9] \cup [2/9, 1/3]}_{\frac{1}{3}C_1} \cup \underbrace{[2/3, 7/9] \cup [8/9, 1]}_{\frac{1}{3}C_1 + \frac{2}{3}}$$

In general, let

$$C_n = \left(\frac{1}{3}C_{n-1}\right) \cup \left(\frac{1}{3}C_{n-1} + \frac{2}{3}\right).$$

Let $C = \bigcap_{n \ge 1} C_n$, called Cantor's middle-third set. Show that C is a closed set.