1. In each of the following problems, you will be given a mathematical definition. Express this definition using the quantifiers \(\forall \) and \(\exists \), negate the definition, and write the negation of the definition in standard English.

 (a) \(f \) is integrable on \([a, b]\) provided that for every \(\varepsilon > 0 \) there is a partition \(P \) of \([a, b]\) such that \(U(P, f) - L(P, f) < \varepsilon \).

 \[f \text{ is integrable on } [a, b] \text{ provided that } \forall \varepsilon > 0, \exists \text{ partition } P \subseteq [a, b], \quad U(P, f) - L(P, f) < \varepsilon \]

 \[f \text{ is not integrable on } [a, b] \text{ provided that } \exists \varepsilon > 0, \forall \text{ partition } P \subseteq [a, b], \quad U(P, f) - L(P, f) \geq \varepsilon \]

 \[f \text{ is not integrable on } [a, b] \text{ provided that there exists an } \varepsilon > 0 \text{ such that for all partitions } P \subseteq [a, b], \quad U(P, f) - L(P, f) \geq \varepsilon \]

 (b) The sequence \(\{a_n\} \) converges to the \(L \) provided that for every \(\varepsilon > 0 \) there is a natural number \(N \) such that if \(n \geq N \), then \(|a_n - L| < \varepsilon \).

 \[\text{The sequence } \{a_n\} \text{ converges to } L \text{ provided that } \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n > N \text{ implies } |a_n - L| < \varepsilon. \]

 \[\text{The sequence } \{a_n\} \text{ does not converge to } L \text{ provided that } \exists \varepsilon > 0, \forall N \in \mathbb{N}, \ \exists n > N \text{ and } |a_n - L| \geq \varepsilon. \]

 \[\text{The sequence } \{a_n\} \text{ does not converge to } L \text{ provided that there exists an } \varepsilon > 0 \text{ such that for every natural number } N \text{ we have } n \geq N \text{ and } |a_n - L| \geq \varepsilon. \]
2. Prove the following theorem: \(\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}, x + y = 0 \).

Let \(x \in \mathbb{Z} \). We must show that there exists \(y \in \mathbb{Z} \) such that \(x + y = 0 \).

Let \(y = -x \). Then \(x + y = x + (-x) = 0 \), as was to be shown.

3. Prove or disprove: \(A \cup B = A \cap B \) if and only if \(A = B \).

This is true.

If \(A = B \), then \(A \cup B = A \) and \(A \cap B = A \)

Hence \(A \cup B = A \cap B \).

Conversely, let us assume \(A \cup B = A \cap B \). We will show \(A = B \).

Let \(x \in A \). Then \(x \in A \cup B \). But \(A \cup B = A \cap B \); thus, \(x \in A \cap B \).

But \(A \cap B \subseteq B \); thus, \(x \in B \), and \(A \subseteq B \).

By reversing the roles of \(A \) and \(B \), we can see that \(B \subseteq A \) as well. Thus \(A = B \).

4. How many integers between 1 and 1000 inclusive are divisible by 5 or 13?

\[
A = \{ j \in \mathbb{Z} : 1 \leq j \leq 1000 \text{ and } 5 \mid j \}\n\]

\[
B = \{ k \in \mathbb{Z} : 1 \leq k \leq 1000 \text{ and } 13 \mid k \}\n\]

Then \(|A \cup B| = |A| + |B| - |A \cap B| \), by inclusion/exclusion principle.

But \(|A| = 200 \) and \(|B| = 76 \).

\(A \cap B = \{ r \in \mathbb{Z} : 1 \leq r \leq 1000 \text{ and } \gcd(r, 5) = \gcd(r, 13) = 1 \}\)

Hence \(A \cap B = 15 \).

Thus \(|A \cup B| = 200 + 76 - 15 = 261 \).
5. Let O be the set of odd integers and let $A = \{ x \in \mathbb{Z} : \exists k \in \mathbb{Z}, x = 4k+3 \}$. Show that $A \subseteq O$.

Let $x \in A$. Then $x = 4k+3$ for some $k \in \mathbb{Z}$. But

$$x = 4k+3 = 4k+2+1 = 2(2k+1)+1.$$

Since $2k+1 \in \mathbb{Z}$, x is an odd number and $x \in O$. This shows $A \subseteq O$.

6. Prove the following Law of DeMorgan: Let A, B, and C be sets. Then

$$A - (B \cup C) = (A - B) \cap (A - C).$$

$$A - (B \cup C) = \{ x : (x \in A) \land \neg (x \in B \lor x \in C) \}$$

$$= \{ x : (x \in A) \land (x \notin B) \land (x \notin C) \}$$

$$= \{ x : (x \in A) \land (x \notin B) \land (x \notin C) \}$$

$$= \{ x : (x \in A) \land (x \notin B) \} \cap \{ x : (x \in A) \land (x \notin C) \}$$

$$= (A - B) \cap (A - C).$$