§22 Recurrence Relations

Tom Lewis

Fall Term 2010

Outline

(1) Introduction to recurrence relations
(2) The structure of first-order linear recurrence relations
(3) Second-order linear recurrence relations

44 The structure of solutions of second-order recurrence relations
(5) Examples

Motivation

Sometimes it easier to describe a sequence $a_{0}, a_{1}, a_{2}, \cdots$ in terms of itself (recursively) rather than in absolute terms.

Problem

At the beginning of a month, Jane invests $\$ 1000.00$ dollars into an account. Thereafter Jane pays an additional $\$ 100.00$ into this account at the end of each month. The account pays 5% interest at the end of each month. Let P_{n} denote the amount of money in the account at the end of the nth month.

- Find P_{1}, P_{2}, and P_{3}.
- Find a recurrence equation relating P_{n} to P_{n-1}.

First-order recurrence relations

- Let s and t be real numbers. The recursive relation

$$
\begin{equation*}
a_{n}=s a_{n-1}+t \tag{1}
\end{equation*}
$$

is called a first-order linear recurrence relation.

- If we specify $a_{0}=\alpha$, then we call α an initial condition.

Theorem (Uniqueness of solutions)

If an initial condition is specified for the first-order linear recurrence relation (1), then this equation has a unique solution.

Lemma

The unique solution of the first-order recurrence relation

$$
a_{n}=s a_{n-1}+t, \quad a_{0}=\alpha
$$

is: $a_{0}=\alpha$ and

$$
a_{n}=s^{n} \alpha+t\left(1+s+s^{2}+\cdots+s^{n-1}\right) \quad \text { for } n \geq 1
$$

Theorem

The first-order recurrence relation

$$
a_{n}=s a_{n-1}+t, \quad a_{0}=\alpha
$$

has a unique solution; namely, $a_{0}=\alpha$ and, for each $n \geq 1$,

$$
a_{n}= \begin{cases}s^{n} \alpha+t \frac{s^{n}-1}{s-1} & \text { if } s \neq 1 ; \\ \alpha+n t & \text { if } s=1\end{cases}
$$

Problem

At the beginning of a month, Jane invests $\$ 1000.00$ dollars into an account. Thereafter Jane pays an additional $\$ 100.00$ into this account at the end of each month. The account pays 5% interest at the end of each month. Let P_{n} denote the amount of money in the account at the end of the nth month. Solve the first-order linear recurrence equation and find a closed-form formula for P_{n}.

Problem

In how many ways can a set of dominoes tile a $2 \times n$ checkerboard?

Figure: One of the ways to tile a 2×11 checkerboard with a set of dominoes

Second-order linear recurrence relations

- Let s_{1} and s_{2} be real numbers. The recursive relation

$$
\begin{equation*}
a_{n}=s_{1} a_{n-1}+s_{2} a_{n-2} \tag{2}
\end{equation*}
$$

is called a second-order linear homogeneous recurrence relation.

- If we specify $a_{0}=\alpha_{0}$ and $a_{1}=\alpha_{1}$, then we call α_{0} and α_{1} the initial conditions.

Theorem (Uniqueness of solutions)
If initial conditions are specified for the second-order linear recurrence relation (2), then this equation has a unique solution.

Problem

Show that the recurrence relation

$$
a_{n}=5 a_{n-1}-6 a_{n-2}
$$

has solutions

- $a_{n}=2^{n}$
- $a_{n}=3^{n}$
- $a_{n}=C_{1} 2^{n}+C_{2} 3^{n}$, where C_{1} and C_{2} are arbitrary constants.

Problem

Find the solution of the recurrence relation

$$
a_{n}=5 a_{n-1}-6 a_{n-2}, \quad a_{0}=1 \text { and } a_{1}=6
$$

Problem

If $a_{n}=r^{n}$ is a solution of the recurrence relation

$$
a_{n}=s_{1} a_{n-1}+s_{2} a_{n-2}
$$

then what condition must r satisfy?

The characteristic polynomial
The characteristic polynomial of the second-order recurrence relation

$$
a_{n}=s_{1} a_{n-1}+s_{2} a_{n-2}
$$

is given by $p(x)=x^{2}-s_{1} x-s_{2}$.

Theorem

If r is a root of the characteristic polynomial $p(x)$ and C is any real number, then $a_{n}=C r^{n}$ solves the second-order recurrence relation (2).

Problem

Recall the recurrence relation related to the tiling of the $2 \times n$ checkerboard by dominoes:

$$
a_{n}=a_{n-1}+a_{n-2}, \quad a_{1}=1, \quad a_{2}=2
$$

- Find the characteristic polynomial and determine its roots.
- Solve the recurrence relation with its initial conditions.

Rooting interest

The solution of a second-order linear recurrence relation depends upon the structure of the roots of the characteristic polynomial.

The trichotomy

The roots of the characteristic polynomial can fall into one and only one the following cases:
Distinct real roots There can be two distinct real roots: r_{1}, r_{2}.
Complex roots There can be two distinct complex roots: z_{1}, z_{2}.
Repeated real root There can be a single repeated root: r.

Theorem (Distinct real roots)

Let the second-order linear recurrence relation (2) with initial conditions $a_{1}=\alpha_{0}$ and $a_{1}=\alpha_{1}$ be given. If the characteristic polynomial has two distinct real roots r_{1} and r_{2}, then the solution of the recurrence relation is given by

$$
a_{n}=C_{1} r_{1}^{n}+C_{2} r_{2}^{n}, \quad \text { for } n \geq 0
$$

where C_{1} and C_{2} are the solutions of the equations:

$$
\begin{aligned}
& C_{1}+C_{2}=\alpha_{0} \\
& C_{1} r_{1}+C_{2} r_{2}=\alpha_{1}
\end{aligned}
$$

Theorem (Complex roots)

Let the second-order linear recurrence relation (2) with initial conditions $a_{1}=\alpha_{0}$ and $a_{1}=\alpha_{1}$ be given. If the characteristic polynomial has the complex roots z_{1} and z_{2}, then the solution of the recurrence relation is given by

$$
a_{n}=C_{1} z_{1}^{n}+C_{2} z_{2}^{n}, \quad \text { for } n \geq 0
$$

where C_{1} and C_{2} are the solutions of the equations:

$$
\begin{aligned}
& C_{1}+C_{2}=\alpha_{0} \\
& C_{1} z_{1}+C_{2} z_{2}=\alpha_{1}
\end{aligned}
$$

Theorem (Repeated real root)

Let the second-order linear recurrence relation (2) with initial conditions $a_{1}=\alpha_{0}$ and $a_{1}=\alpha_{1}$ be given. We suppose that the characteristic polynomial has a repeated root r. There are two cases:
(1) If $r \neq 0$, then the solution of the recurrence relation is given by

$$
a_{n}=C_{1} r^{n}+C_{2} n r^{n}, \quad \text { for } n \geq 0
$$

where C_{1} and C_{2} are the solutions of the equations:

$$
\begin{aligned}
& C_{1}=\alpha_{0} \\
& C_{1} r+C_{2} r=\alpha_{1}
\end{aligned}
$$

(2) If $r=0$, then $a_{n}=0$ for all $n \geq 2$.

Problem

Solve the following recurrence relations:
(1) $a_{n}=6 a_{n-1}-9 a_{n-2}, a_{0}=2, a_{1}=21$
(2) $a_{n}=4 a_{n-1}-5 a_{n-1}, a_{0}=2, a_{1}=6$

