§21 Induction

Tom Lewis

Fall Term 2010
Outline

1. The method of induction

2. Strong mathematical induction
Pessimists and Optimists

In the solving of problems, the method of smallest counterexample is a “glass-half-empty” approach; mathematical induction is a “glass-half-full” approach.
The method of induction

Tipping propositions with mathematical induction

Suppose that we want to show that each of the propositions P_0, P_1, P_2, \ldots is true.

First show that P_0 is true. This is the customary base case or basis step.

Here is the tricky part. If we can show that for each $k \geq 0$, P_k is true \Rightarrow P_{k+1} is true.

The Induction Hypothesis

then, in fact, we will shown that each P_k, $k \in \mathbb{N}$, is true.
Tipping propositions with mathematical induction

- Suppose that we want to show that each of the propositions P_0, P_1, P_2, \ldots is true.
Suppose that we want to show that each of the propositions P_0, P_1, P_2, \ldots is true.

First show that P_0 is true. This is the customary base case or basis step.
Tipping propositions with mathematical induction

- Suppose that we want to show that each of the propositions P_0, P_1, P_2, \ldots is true.
- First show that P_0 is true. This is the customary base case or basis step.
- Here is the tricky part. If we can show that for each $k \geq 0$,

$$ P_k \text{ is true} \implies P_{k+1} \text{ is true.} $$

The Induction Hypothesis

then, in fact, we will shown that each $P_k, k \in \mathbb{N}$, is true.
Problem

Use mathematical induction to prove the following theorem.
Problem

Use mathematical induction to prove the following theorem.

Theorem

Let \(n \) be a natural number. Then

\[
0 + 1 + 2 + \cdots + n = \frac{n(n + 1)}{2}.
\]
Problem

Use mathematical induction to prove the following theorem.
The method of induction

Problem

Use mathematical induction to prove the following theorem.

Theorem

Let n be a natural number. Then

$$1 + 2^1 + 2^2 + \cdots + 2^n = 2^{n+1} - 1$$
Problem

Use mathematical induction to prove the following theorem.
Problem

Use mathematical induction to prove the following theorem.

Theorem

Let $n \geq 1$ be an integer. Then $n < 2^n$.
Problem

Use mathematical induction to prove the following theorem.
Problem
Use mathematical induction to prove the following theorem.

Theorem
Let n be a natural number. Then $4^n - 1$ is divisible by 3.
The method of induction

Problem

Let \(\{a_n\} \) be a sequence of numbers defined recursively as: \(a_0 = 10 \) and, for \(n \geq 1 \),

\[
a_n = \frac{1}{2}a_{n-1} + 10.
\]

Use mathematical induction to prove the following theorem.
Problem

Let \(\{a_n\} \) be a sequence of numbers defined recursively as: \(a_0 = 10 \) and, for \(n \geq 1 \),

\[
a_n = \frac{1}{2}a_{n-1} + 10.
\]

Use mathematical induction to prove the following theorem.

Theorem

Let \(n \) be a natural number. Then \(a_n \leq 20 \).
Tiling with L-triominos
Theorem

Let $n \geq 1$ be an integer. A set of L-triominos can tile all but one cell of a $2^n \times 2^n$ chessboard.
Suppose that we want to show that each of the propositions P_0, P_1, P_2, … is true.

First show that P_0 is true. This is the customary base case or basis step.

Here is the tricky part. If we can show that for each $k \geq 0$, P_0, P_1, …, P_k are true \[\Rightarrow \] The Strong Induction Hypothesis

then, in fact, we will shown that each P_k, $k \in \mathbb{N}$, is true.
Tipping propositions with mathematical induction

1. Suppose that we want to show that each of the propositions P_0, P_1, P_2, \ldots is true.
Tipping propositions with mathematical induction

- Suppose that we want to show that each of the propositions \(P_0, P_1, P_2, \ldots \) is true.
- First show that \(P_0 \) is true. This is the customary base case or basis step.
Suppose that we want to show that each of the propositions P_0, P_1, P_2, \ldots is true.

First show that P_0 is true. This is the customary base case or basis step.

Here is the tricky part. If we can show that for each $k \geq 0$,

$$P_0, P_1, \ldots, P_k \text{ are true} \quad \Rightarrow \quad P_{k+1} \text{ is true.}$$

The Strong Induction Hypothesis

then, in fact, we will shown that each P_k, $k \in \mathbb{N}$, is true.
Strong mathematical induction

Problem

Define a sequence \(\{g_n\} \) as follows: \(g_1 = 5 \), \(g_2 = 13 \), and

\[
g_n = 5g_{n-1} - 6g_{n-2} \quad \forall n \geq 3.
\]

Show that \(g_n = 2^n + 3^n \) for all \(n \geq 1 \).