§14 Equivalence Relations

Tom Lewis

Fall Term 2010

Outline

1. The definition
2. Congruence modulo n
3. Has-the-same-size-as
4. Equivalence classes
5. Some theorems
6. Partitioning by equivalence classes
Equivalence relations are ubiquitous. They are like the air we breathe; we hardly take notice.

Example
- Equivalence of logical propositions.
- Congruence of triangles in geometry.
- Equivalence of systems of equations in linear algebra.
- Equivalence of measurable functions in analysis.
- Equivalence of time on the clock.

Definition (Equivalence relation)

Let R be a relation on a set A. We say R is an equivalence relation provided it is reflexive, symmetric, and transitive. Thus:

- aRa for all $a \in A$.
- aRb implies bRa for all $a, b \in A$.
- If aRb and bRc, then aRc.
Definition
Let n be a positive integer. We say that the integers x is congruent modulo n to y, denoted by $x \equiv y \pmod{n}$ provided $n \mid y - x$.

Theorem
Let n be a positive integer. The relation
\[
\{(a, b) \in \mathbb{Z} \times \mathbb{Z} : a \equiv b \pmod{n}\}
\]
is an equivalence relation.

Definition
Let Ω be a set and let \mathcal{P} be its power set. Given $A, B \in \mathcal{P}$, define a relation R on \mathcal{P} by $(A, B) \in R$ provided that $|A| = |B|$. In other words, A and B are related provided that they have the same size. This is called the has-the-same-size-as relation.

Theorem
The has-the-same-size-as relation is an equivalence relation.
Definition
Let R be an equivalence relation on a set A and let $a \in A$. The equivalence class of a, denoted by $[a]$, is the set of all elements of A that are related to a through the relation R; that is,

$$[a] = \{ x \in A : xRa \}$$

Problem
Finish the theorem: $x \in [a]$ if and only if . . .

Problem
For the congruence modulo 3 relation, what is the equivalence class of 0? of 1? of 2? of 3?

Problem
For the has-the-same-size-as relation on the power set of $\{a, b, c, d, e\}$, what is the equivalence class of $\{a, d\}$? of $\{b, c, e\}$? of \emptyset?
Some theorems

Theorem

*Let R be an equivalence relation on a set A and let $a \in A$. Then $a \in [a]$.***

Theorem

*Let R be an equivalence relation on a set A and let $a, b \in A$. Then aRb if and only if $[a] = [b]$.***

Theorem

*Let R be an equivalence relation on a set A and let $a, x, y \in A$. If $x, y \in [a]$, then xRy. (Exercise 14.9)***

Theorem

*Let R be an equivalence relation on a set A and suppose $[a] \cap [b] \neq \emptyset$. Then $[a] = [b]$.***

Partitioning by equivalence classes

Definition

A **partition** of a set A is a collection of nonempty, pairwise disjoint subsets of A whose union is A.

Theorem

*Let R be an equivalence relation on a set A. The equivalence classes of R form a partition of A.***

Problem

Partition the power set of $\{a, b, c\}$ into the equivalence classes of the has-the-same-size-as relation.