§13 Relations

Tom Lewis

Fall Term 2010
Outline

1. Some examples
2. The inverse of a relation
3. Some properties a relation may have
Example

Here are some mothers and their daughters:

<table>
<thead>
<tr>
<th>Alice</th>
<th>Barb</th>
<th>Candace</th>
<th>Deborah</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edna</td>
<td>Felicia</td>
<td>GiGi</td>
<td>Hypatia</td>
</tr>
<tr>
<td>Ignacia</td>
<td>Janice</td>
<td></td>
<td>Klute</td>
</tr>
<tr>
<td>Linda</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We can pair mothers and daughters together and create a grand set:

\[R = \{(A, E), (A, I), (A, L), (B, F), (B, J), (C, G), (D, H), (D, K)\} \]

If we let \(M \) denote the set of mothers and \(D \) denote the set of daughters, then

\[R \subseteq M \times D. \]

R is called a relation from \(M \) to \(D \).
Example

Let us continue with our example.

<table>
<thead>
<tr>
<th>Alice</th>
<th>Barb</th>
<th>Candace</th>
<th>Deborah</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edna</td>
<td>Felicia</td>
<td>GiGi</td>
<td>Hypatia</td>
</tr>
<tr>
<td>Ignacia</td>
<td>Janice</td>
<td></td>
<td>Klute</td>
</tr>
<tr>
<td>Linda</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In this case we will pair anyone from the set of daughters with any one who is their sister.

\[S = \{(E, I), (E, L), (I, E), (I, L), (L, E), (L, I), (F, J), (J, F), (H, K), (K, H)\} \]

Notice that \(S \subseteq D \times D \). We call \(S \) a relation on \(D \).
Some examples

Example

Here is an abstract example:

\[T = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : 3|(b - a)\}. \]

It would be impossible to list all of the members of \(T \), but we can see that

(0, 3), (6, -3), (4, 10), and (51, 39)

are members of \(T \).
Definition (Relation)

A **relation** is a set of ordered pairs.
Definition (Relation)
A relation is a set of ordered pairs.

Definition (Relation between sets)
Let R be a relation and let A and B be sets. We say that R is a relation on A provided that $R \subseteq A \times A$, and we say R is a relation from A to B provided that $R \subseteq A \times B$.

Some notation
If $(a, b) \in R$, then we will write aRb to indicate that a is related to b through R.

Tom Lewis () §13 Relations Fall Term 2010 6 / 12
Definition (Relation)
A relation is a set of ordered pairs.

Definition (Relation between sets)
Let R be a relation and let A and B be sets. We say that R is a relation on A provided that $R \subseteq A \times A$, and we say R is a relation from A to B provided that $R \subseteq A \times B$.

Some notation
If $(a, b) \in R$, then we will write aRb to indicate that a is related to b through R.
The inverse of a relation

Definition

Let R be a relation. The inverse of R, denoted by R^{-1}, is the relation formed by reversing the order of all the ordered pairs.

Problem

Finish this sentence: If R is a relation from A to B, then R^{-1} is a relation from . . .
Definition

Let R be a relation. The inverse of R, denoted by R^{-1}, is the relation formed by reversing the order of all the ordered pairs.

Problem

Finish this sentence: If R is a relation from A to B, then R^{-1} is a relation from
The inverse of a relation

Problem

Find the inverse relation of \(R = \{(A, E), (A, I), (A, L), (B, F), (B, J), (C, G), (D, H), (D, K)\}\).

Find the inverse relation of \(T = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : 3 \mid (b - a)\}\).
Problem

Find the inverse relation of

\[R = \{(A, E), (A, I), (A, L), (B, F), (B, J), (C, G), (D, H), (D, K)\} \]
Problem

Find the inverse relation of

\[R = \{(A, E), (A, I), (A, L), (B, F), (B, J), (C, G), (D, H), (D, K)\} \]

Find the inverse relation of

\[T = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : 3| (b - a)\}. \]
The inverse of a relation

Theorem

Let R be a relation. Then $(R^{-1})^{-1} = R.$
Definition

Let R be a relation on a set A.

Some properties a relation may have
Definition

Let \(R \) be a relation on a set \(A \).

- \(R \) is **reflexive** provided that \(xRx \) for all \(x \in A \).
Definition

Let R be a relation on a set A.

- R is **reflexive** provided that xRx for all $x \in A$.
- R is **irreflexive** provided that $(x, x) \notin R$ for all $x \in A$.
Some properties a relation may have

Definition

Let R be a relation on a set A.

- R is reflexive provided that xRx for all $x \in A$.
- R is irreflexive provided that $(x, x) \notin R$ for all $x \in A$.
- R is symmetric provided that if xRy, then yRx for all $x, y \in A$.
- R is transitive provided that if xRy and yRz, then xRz for all $x, y, z \in A$.
Definition

Let R be a relation on a set A.

- R is **reflexive** provided that xRx for all $x \in A$.
- R is **irreflexive** provided that $(x, x) \notin R$ for all $x \in A$.
- R is **symmetric** provided that if xRy, then yRx for all $x, y \in A$.
- R is **antisymmetric** provided that if xRy and yRx, then $x = y$ for all $x, y \in A$.

Question

Is irreflexive the same as not reflexive?
Definition

Let R be a relation on a set A.

- R is reflexive provided that xRx for all $x \in A$.
- R is irreflexive provided that $(x, x) \notin R$ for all $x \in A$.
- R is symmetric provided that if xRy, then yRx for all $x, y \in A$.
- R is antisymmetric provided that if xRy and yRx, then $x = y$ for all $x, y \in A$.
- R is transitive provided that if xRy and yRz, then xRz for all $x, y, z \in A$.

Question

Is irreflexive the same as not reflexive?
Some properties a relation may have

Definition

Let R be a relation on a set A.

- R is **reflexive** provided that xRx for all $x \in A$.
- R is **irreflexive** provided that $(x, x) \notin R$ for all $x \in A$.
- R is **symmetric** provided that if xRy, then yRx for all $x, y \in A$.
- R is **antisymmetric** provided that if xRy and yRx, then $x = y$ for all $x, y \in A$.
- R is **transitive** provided that if xRy and yRz, then xRy for all $x, y, z \in A$.

Question

Is irreflexive the same as not reflexive?
Some properties a relation may have

Problem

Let S be the relation

$$S = \{(E, I), (E, L), (I, E), (I, L), (L, E), (L, I), (F, J), (J, F), (H, K), (K, H)\}$$

Problem

Let T be the relation

$$T = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} : 3 | (b - a)\}.$$