§8 Factorial

Tom Lewis

Fall Term 2010

Outline

1. Factorial

2. Product notation

3. The Gamma function
Definition

The number of length \(n \) lists that can be created by selecting without replacement from a pool of size \(n \) is given by

\[
(n)_n = n \times (n - 1) \times \cdots \times 3 \times 2 \times 1.
\]

This quantity occurs with such frequency in mathematics that we denote it by \(n! \). By convention we set

\[
0! = 1.
\]

Problem

Let \(n \) and \(k \) be nonnegative integers with \(0 \leq k \leq n \). Show that

\[
(n)_k = \frac{n!}{(n - k)!}
\]

Product notation

Definition

Given a sequence of real numbers \(a_1, a_2, \ldots, a_n \), let

\[
\prod_{k=1}^{n} a_k = a_1 \cdot a_2 \cdots a_n.
\]

The variable \(k \) is called the index of the product. Any choice of index variable will achieve the same thing.

Problem

Express \(n! \) in product notation.
Problem

Evaluate the following products:

- \(\prod_{i=1}^{5} (3i + 2) \)
- \(\prod_{j=2}^{8} (j + 1)/j \)

Problem

Express \(1 \times 3 \times 5 \times 9 \times 11 \times 13 \times 15 \) using...

- product notation
- factorials and powers
Definition
For each real number x, $x > 0$, define

$$\Gamma(x) = \int_0^{\infty} t^{x-1} e^{-t} \, dt.$$

This is Euler’s Gamma function.

Problem
- **Evaluate** $\Gamma(1)$ and $\Gamma(2)$.
- **Show that**
 $$\Gamma(x + 1) = x\Gamma(x).$$
- **Show that** $\Gamma(m + 1) = m!$ for each integer $m \geq 0$.

Tom Lewis (§ 8 Factorial)
Fall Term 2010 7 / 7