§11 Sets II
Operations

Tom Lewis

Fall Term 2010
Outline

1. Union and intersection
2. Set operations
3. The size of a union
4. Difference and symmetric difference
5. Cartesian products
Definition
Let A and B be sets.
Definition

Let A and B be sets.

- The **union** of A and B, denoted by $A \cup B$, is the set of all elements that are in A or B (possibly both).
Definition

Let A and B be sets.

- The **union** of A and B, denoted by $A \cup B$, is the set of all elements that are in A or B (possibly both).
- The **intersection** of A and B, denoted by $A \cap B$, is the set of all elements that are in A and B.
Problem

Express $A \cup B$ and $A \cap B$ using set-builder notation and the logical symbols \lor and \land.
Problem

Express \(A \cup B \) and \(A \cap B \) using set-builder notation and the logical symbols \(\lor \) and \(\land \).

Problem

Express \(A \cup B \) and \(A \cap B \) using Venn diagrams.
Theorem

Let A, B, and C be sets. The following are true:

Commutative

$A \cup B = B \cup A$ and $A \cap B = B \cap A$

Associative

$A \cup (B \cup C) = (A \cup B) \cup C$ and $A \cap (B \cap C) = (A \cap B) \cap C$

Identity

$A \cup \emptyset = A$ and $A \cap \emptyset = \emptyset$

Distributive

$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Problem

Show that $(A \cap B) \cap C = (C \cap A) \cap B$.

Problem

Prove the associative property for the union of sets.
Theorem

Let A, B, and C be sets. The following are true:

Commutative \[A \cup B = B \cup A \text{ and } A \cap B = B \cap A \]
Theorem

Let A, B, and C be sets. The following are true:

Commutative $A \cup B = B \cup A$ and $A \cap B = B \cap A$

Associative $A \cup (B \cup C) = (A \cup B) \cup C$ and $A \cap (B \cap C) = (A \cap B) \cap C$
Theorem

Let A, B, and C be sets. The following are true:

Commutative $A \cup B = B \cup A$ and $A \cap B = B \cap A$

Associative $A \cup (B \cup C) = (A \cup B) \cup C$ and $A \cap (B \cap C) = (A \cap B) \cap C$

Identity $A \cup \emptyset = A$ and $A \cap \emptyset = \emptyset$
Theorem

Let A, B, and C be sets. The following are true:

Commutative $A \cup B = B \cup A$ and $A \cap B = B \cap A$

Associative $A \cup (B \cup C) = (A \cup B) \cup C$ and $A \cap (B \cap C) = (A \cap B) \cap C$

Identity $A \cup \emptyset = A$ and $A \cap \emptyset = \emptyset$

Distributive $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Theorem

Let A, B, and C be sets. The following are true:

Commutative $A \cup B = B \cup A$ and $A \cap B = B \cap A$

Associative $A \cup (B \cup C) = (A \cup B) \cup C$ and $A \cap (B \cap C) = (A \cap B) \cap C$

Identity $A \cup \emptyset = A$ and $A \cap \emptyset = \emptyset$

Distributive $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Problem

Show that $(A \cap B) \cap C = (C \cap A) \cap B$.
Theorem

Let A, B, and C be sets. The following are true:

Commutative $A \cup B = B \cup A$ and $A \cap B = B \cap A$

Associative $A \cup (B \cup C) = (A \cup B) \cup C$ and $A \cap (B \cap C) = (A \cap B) \cap C$

Identity $A \cup \emptyset = A$ and $A \cap \emptyset = \emptyset$

Distributive $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Problem

Show that $(A \cap B) \cap C = (C \cap A) \cap B$.

Problem

Prove the associative property for the union of sets.
Definition (Disjoint)

Let A and B be sets. We call A and B disjoint provided that $A \cap B = \emptyset$.

In general, let A_1, A_2, \ldots, A_n be a collection of sets. The sets are called pairwise disjoint provided that $A_i \cap A_j = \emptyset$ whenever $i \neq j$. In other words, no pair of sets has any elements in common.

Theorem (The addition principle)

Let A_1, A_2, \ldots, A_n be pairwise disjoint. Then $|A_1 \cup A_2 \cup \ldots \cup A_n| = |A_1| + |A_2| + \cdots + |A_n|$.
Definition (Disjoint)

Let A and B be sets. We call A and B disjoint provided that $A \cap B = \emptyset$.
The size of a union

Definition (Disjoint)

- Let A and B be sets. We call A and B disjoint provided that $A \cap B = \emptyset$.

- In general, let A_1, A_2, \ldots, A_n be a collection of sets. The sets are called pairwise disjoint provided that $A_i \cap A_j = \emptyset$ whenever $i \neq j$. In other words, no pair of sets has any elements in common.
Definition (Disjoint)

- Let A and B be sets. We call A and B **disjoint** provided that $A \cap B = \emptyset$.

- In general, let A_1, A_2, \ldots, A_n be a collection of sets. The sets are called **pairwise disjoint** provided that $A_i \cap A_j = \emptyset$ whenever $i \neq j$. In other words, no pair of sets has any elements in common.

Theorem (The addition principle)

Let A_1, A_2, \ldots, A_n be pairwise disjoint. Then

$$|A_1 \cup A_2 \cup \ldots \cup A_n| = |A_1| + |A_2| + \cdots + |A_n|.$$
There are 24 students taking Math 141, 19 students taking Bio 101, and 11 students taking both Math 141 and Bio 101. How many students are taking either course?
Problem

There are 24 students taking Math 141, 19 students taking Bio 101, and 11 students taking both Math 141 and Bio 101. How many students are taking either course?

Theorem (Inclusion/exclusion principle)

Let A and B be sets. Then

$$|A \cup B| = |A| + |B| - |A \cap B|.$$
A keypad contains the digits 0 through 9. An access code consists of selecting 4 keys in succession, repetitions allowed. How many codes begin with a 3 or end with an 8?
Problem

A keypad contains the digits 0 through 9. An access code consists of selecting 4 keys in succession, repetitions allowed. How many codes begin with a 3 or end with an 8?

Problem

How many integers between 1 and 100 (inclusive) are divisible by 2 or 5?
Definition (Set difference)
Let A and B be sets. The difference between A and B, denoted by $A - B$, is the set of all elements of A that are not in B.

$$A - B = \{x : x \in A \text{ and } x \notin B\}$$
Definition (Set difference)

Let A and B be sets. The **difference** between A and B, denoted by $A - B$, is the set of all elements of A that are not in B.

$$A - B = \{ x : x \in A \text{ and } x \notin B \}$$

Definition (Symmetric difference)

Let A and B be sets. The **symmetric difference** between A and B, denoted by $A \Delta B$, is the set of all elements in A but not B or in B but not A.

$$A \Delta B = (A - B) \cup (B - A).$$
Theorem (DeMorgan’s law)

Let A, B, and C be sets. Then

$$A - (B \cup C) = (A - B) \cap (A - C) \quad \text{and} \quad A - (B \cap C) = (A - B) \cup (A - C)$$
Theorem (DeMorgan’s law)

Let A, B, and C be sets. Then

\[A - (B \cup C) = (A - B) \cap (A - C) \quad \text{and} \quad A - (B \cap C) = (A - B) \cup (A - C) \]

Proof.

The proof is an exercise. Do these make sense by Venn diagrams?
Problem

An experiment consists of tossing a red die and a green die. Describe the set of outcomes of this experiment.

Definition

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all possible ordered pairs (a, b) where $a \in A$ and $b \in B$. That is,

$$A \times B = \{ (a, b) : a \in A, b \in B \}$$
Problem

An experiment consists of tossing a red die and a green die. Describe the set of outcomes of this experiment.

Definition

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all possible ordered pairs (a, b) where $a \in A$ and $b \in B$. That is,

$$A \times B = \{(a, b) : a \in A, \ b \in B\}$$
Problem

An experiment consists of tossing a red die and a green die. Describe the set of outcomes of this experiment.

Definition

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all possible ordered pairs (a, b) where $a \in A$ and $b \in B$. That is,

$$A \times B = \{(a, b) : a \in A, \ b \in B\}$$

Problem

Construct an explicit example to show that $A \times B$ is not necessarily equal to $B \times A$.
Theorem

Let A and B be sets. Then

$$|A \times B| = |A| \times |B|.$$