§10 Quantifiers

Tom Lewis

Fall Term 2010

Outline

1. Overview
2. There is
3. For all
4. Negation
5. Combining quantifiers
How many?

Consider the following statements about the books in my library:

- **There is** a book in my library that I have read.
- **All** of the books in my library have an index.
- **There exists** a book in my library that has a green cover.
- **Every** book in my library is boring.
- **Most** of the books in my library are detective novels.

Definition

The quantifying phrase **there exists** (equivalently **there is**) is denoted by the symbol \(\exists\).

Example

The following are equivalent:

- There is a natural number that is a perfect square and strictly between 80 and 90.

- \(\exists x \in \mathbb{N}, x\) is a perfect square and \(80 < x < 90\).
Proving an existential statement

Consider an existential assertion of the form

$$\exists x \in A, x \text{ satisfies some property.}$$

What is required to prove such a statement? What is required to disprove such a statement?

Problem

Prove the following theorem:

Theorem

$$\exists x \in \mathbb{N}, x \text{ is a perfect square and } 80 < x < 90.$$
Proving a universal statement

Consider a universal assertion:

\[\forall x \in A, \ x \text{ satisfies some property.} \]

What is required to prove such a statement? What is required to disprove such a statement?

Problem

Let \(A = \{ x \in \mathbb{Z} : 4 \mid x \} \). Prove the following theorem:

Theorem

\[\forall x \in A, \ x \text{ is even.} \]

Negation

Problem

Form the negation of each of the following quantified statements:

- \(\forall x \in A, \ x \text{ satisfies property } P. \)
- \(\exists x \in A, \ x \text{ satisfies property } P. \)

A helpful mnemonic

\[\neg \forall x \in A, \cdots = \exists x \in A, \neg \cdots \quad \text{and} \quad \neg \exists x \in A, \cdots = \forall x \in A, \neg \cdots \]
Problem

Let $A = \{x \in \mathbb{Z} : 4 \mid x\}$ Negate the following:

- $\forall x \in A, 6 \mid x$.
- $\exists x \in A, x$ is odd.

Combining quantifiers

Combinations of quantifiers

Statements can combine two or more quantifiers. The order in which the quantifiers are listed is important.

Problem

Let E denote the set of even integers. What is the difference between these two statements

$\forall x \in E, \exists j \in \mathbb{Z}, x = 2j$

$\exists j \in \mathbb{Z}, \forall x \in E, x = 2j$
Negate the following statement:

$$\exists j \in \mathbb{Z}, \forall x \in E, x = 2j$$