§10 Quantifiers

Tom Lewis

Fall Term 2010
Outline

1. Overview
2. There is
3. For all
4. Negation
5. Combining quantifiers
How many?

Consider the following statements about the books in my library:

There is a book in my library that I have read.

All of the books in my library have an index.

There exists a book in my library that has a green cover.

Every book in my library is boring.

Most of the books in my library are detective novels.
How many?

Consider the following statements about the books in my library:

- There is a book in my library that I have read.
How many?

Consider the following statements about the books in my library:

- There is a book in my library that I have read.
- All of the books in my library have an index.
How many?
Consider the following statements about the books in my library:

- There is a book in my library that I have read.
- All of the books in my library have an index.
- There exists a book in my library that has a green cover.
How many?

Consider the following statements about the books in my library:

- **There is** a book in my library that I have read.
- **All** of the books in my library have an index.
- **There exists** a book in my library that has a green cover.
- **Every** book in my library is boring.
How many?

Consider the following statements about the books in my library:

- **There is** a book in my library that I have read.
- **All** of the books in my library have an index.
- **There exists** a book in my library that has a green cover.
- **Every** book in my library is boring.
- **Most** of the books in my library are detective novels.
Definition

The quantifying phrase \textit{there exists} (equivalently \textit{there is}) is denoted by the symbol \exists.

Example

The following are equivalent:

\[\exists x \in \mathbb{N}, x \text{ is a perfect square and } 80 < x < 90. \]
Definition

The quantifying phrase *there exists* (equivalently *there is*) is denoted by the symbol \exists.

Example

The following are equivalent:

There is a natural number that is a perfect square and strictly between 80 and 90.

$\exists x \in \mathbb{N}, \ x \text{ is a perfect square and } 80 < x < 90.$
Definition
The quantifying phrase **there exists** (equivalently **there is**) is denoted by the symbol \exists.

Example
The following are equivalent:
- There is a natural number that is a perfect square and strictly between 80 and 90.
Definition

The quantifying phrase **there exists** (equivalently **there is**) is denoted by the symbol \exists.

Example

The following are equivalent:

- There is a natural number that is a perfect square and strictly between 80 and 90.
- $\exists x \in \mathbb{N}, x$ is a perfect square and $80 < x < 90$.
Proving an existential statement

Consider an existential assertion of the form

$$\exists x \in A, \ x \text{ satisfies some property}.$$

What is required to prove such a statement? What is required to disprove such a statement?
Proving an existential statement

Consider an existential assertion of the form

$$\exists x \in A, \ x \text{ satisfies some property.}$$

What is required to prove such a statement? What is required to disprove such a statement?

Problem

Prove the following theorem:
Proving an existential statement

Consider an existential assertion of the form

\[\exists x \in A, \ x \text{ satisfies some property.} \]

What is required to prove such a statement? What is required to disprove such a statement?

Problem

Prove the following theorem:

Theorem

\[\exists x \in \mathbb{N}, \ x \text{ is a perfect square and } 80 < x < 90. \]
Definition

The quantifying phrase for all (equivalently each, every, any) is denoted by the symbol \(\forall \).
Definition

The quantifying phrase for all (equivalently each, every, any) is denoted by the symbol \forall.

Example

Let $A = \{x \in \mathbb{Z} : 4|\,x\}$. The following are equivalent:
Definition

The quantifying phrase for all (equivalently each, every, any) is denoted by the symbol \forall.

Example

Let $A = \{x \in \mathbb{Z} : 4|\text{x}\}$.

The following are equivalent:

- Any integer that is divisible by 4 is even.
Definition

The quantifying phrase for all (equivalently each, every, any) is denoted by the symbol \(\forall \).

Example

Let \(A = \{ x \in \mathbb{Z} : 4 | x \} \). The following are equivalent:

- Any integer that is divisible by 4 is even.
- \(\forall x \in A, x \) is even.
Proving a universal statement

Consider a universal assertion:

$$\forall x \in A, \ x \text{ satisfies some property.}$$

What is required to prove such a statement? What is required to disprove such a statement?
Proving a universal statement

Consider a universal assertion:

\[\forall x \in A, \ x \text{ satisfies some property.} \]

What is required to prove such a statement? What is required to disprove such a statement?

Problem

Let \(A = \{ x \in \mathbb{Z} : 4 \mid x \} \). Prove the following theorem:
Proving a universal statement

Consider a universal assertion:

\[\forall x \in A, \ x \text{ satisfies some property.} \]

What is required to prove such a statement? What is required to disprove such a statement?

Problem

Let \(A = \{ x \in \mathbb{Z} : 4 | x \} \). Prove the following theorem:

Theorem

\(\forall x \in A, \ x \text{ is even.} \)
Problem

Form the negation of each of the following quantified statements:
Problem

Form the negation of each of the following quantified statements:

- $\forall x \in A, x$ satisfies property P.
Problem

Form the negation of each of the following quantified statements:

- $\forall x \in A, x$ satisfies property P.
- $\exists x \in A, x$ satisfies property P.
Problem

Form the negation of each of the following quantified statements:

- \(\forall x \in A, x \text{ satisfies property } P. \)
- \(\exists x \in A, x \text{ satisfies property } P. \)

A helpful mnemonic

- \(\neg \forall x \in A, \cdots = \exists x \in A, \neg \cdots \quad \text{and} \quad \neg \exists x \in A, \cdots = \forall x \in A, \neg \cdots \)
Let $A = \{x \in \mathbb{Z} : 4 | x\}$ Negate the following:

$\forall x \in A, 6 \nmid x.$

$\exists x \in A, \text{x is odd}.$
Problem

Let \(A = \{ x \in \mathbb{Z} : 4 \mid x \} \) Negate the following:

- \(\forall x \in A, 6 \mid x. \)
Let $A = \{ x \in \mathbb{Z} : 4 \mid x \}$ Negate the following:

- $\forall x \in A, 6 \mid x$.
- $\exists x \in A, x \text{ is odd.}$
Combinations of quantifiers

Statements can combine two or more quantifiers. The order in which the quantifiers are listed is important.

Problem

Let E denote the set of even integers. What is the difference between these two statements?

1. $\forall x \in E, \exists j \in \mathbb{Z}, x = 2j$
2. $\exists j \in \mathbb{Z}, \forall x \in E, x = 2j$
Combining quantifiers

Statements can combine two or more quantifiers. The order in which the quantifiers are listed is important.

Problem

Let E denote the set of even integers. What is the difference between these two statements

\[
\forall x \in E, \exists j \in \mathbb{Z}, x = 2j \\
\exists j \in \mathbb{Z}, \forall x \in E, x = 2j
\]
Problem

Negate the following statement:

\[\exists j \in \mathbb{Z}, \forall x \in E, x = 2j \]