§6.6–The Inverse Trigonometric Functions

Tom Lewis

Fall Semester
2015

Outline

The inverse sine function
The inverse cosine function
The inverse tangent function
The other inverse trig functions
Miscellaneous problems
Integrals
Definition

- The sine function is one-to-one on \([-\pi/2, \pi/2]\) and has range \([-1, 1]\) on this domain.
- We define \(\sin^{-1}\) to be the inverse of sine on this domain. It follows that \(\sin^{-1}\) has domain \([-1, 1]\) and range \([-\pi/2, \pi/2]\).

Cancellation equations

Because of these restrictions, we must be a little careful with the inverse relationships:

\[
\sin (\sin^{-1}(x)) = x, \quad -1 \leq x \leq 1
\]
\[
\sin^{-1} (\sin(x)) = x, \quad -\pi/2 \leq x \leq \pi/2
\]
Problem

Evaluate the following:

- \(\sin(\sin^{-1}(0.3)) \)
- \(\sin^{-1}(\sin(14\pi/3)) \). *(Be careful. Try this on a calculator first.)*

Problem

Show that \(\cos(\sin^{-1}(x)) = \sqrt{1-x^2} \).
Problem

Find \(\cos \left(2 \sin^{-1} \left(\frac{1}{4} \right) \right) \).

Theorem

\[
D_x \sin^{-1}(x) = \frac{1}{\sqrt{1-x^2}}.
\]
Problem

Find the derivative of $y = x \sin^{-1}(x^2)$.

Definition

- The cosine function is one-to-one on the interval $[0, \pi]$ and has range $[-1, 1]$ on that domain.
- Let \cos^{-1} denote the inverse of the cosine function restricted to the domain $[0, \pi]$. Thus the domain of \cos^{-1} is $[-1, 1]$ and its range is $[0, \pi]$.
The cancellation equations

\[
\cos \left(\cos^{-1}(x) \right) = x, \quad -1 \leq x \leq 1
\]
\[
\cos^{-1} \left(\cos(x) \right) = x, \quad 0 \leq x \leq \pi
\]

Problem

- Evaluate \(\cos^{-1} \left(\cos(14\pi/3) \right) \)
- Show that \(\sin \left(\cos^{-1}(x) \right) = \sqrt{1 - x^2} \)
Theorem

\[D_x \cos^{-1}(x) = -\frac{1}{\sqrt{1-x^2}} \]

Definition

- The tangent is one-to-one on the interval \((-\pi/2, \pi/2)\) and has range \((-\infty, \infty)\) on this domain.
- Let \(\tan^{-1}\) be the inverse of the tangent function on this restricted domain. Thus the domain of \(\tan^{-1}\) is \((-\infty, \infty)\) and its range is \((-\pi/2, \pi/2)\).
The cancellation equations
\[
\tan\left(\tan^{-1}(x)\right) = x \quad -\infty < x < \infty \\
\tan^{-1}\left(\tan(x)\right) = x \quad -\pi/2 < x < \pi/2.
\]

Problem

Show that \(\sec^2\left(\tan^{-1}(x)\right) = 1 + x^2 \)
Theorem

\[D_x \tan^{-1}(x) = \frac{1}{1 + x^2}, \quad x \in \mathbb{R}. \]
Problem

Find y' *in each case:*

- $y = \tan^{-1}(e^x)$
- $y = \sqrt{1 - x^2} \sin^{-1}(x)$
- $y = \sin^{-1}(x) + \cos^{-1}(x)$

Basic integration formulas

- $\int \frac{1}{\sqrt{1 - x^2}} \, dx = \sin^{-1}(x) + C$
- $\int \frac{1}{1 + x^2} \, dx = \tan^{-1}(x) + C$

Problem

Why is there no formula involving $\cos^{-1}(x)$?
Problem

Evaluate the following integrals:

1. \(\int \frac{\tan^{-1}(x)}{1 + x^2} \, dx \)
2. \(\int_{0}^{\pi/2} \frac{\sin(x)}{1 + \cos^2(x)} \, dx \)
3. \(\int_{0}^{1} \frac{1}{\sqrt{4 - t^2}} \, dt \)
4. \(\int \frac{1}{a^2 + x^2} \, dx \), where \(a \) is any real number.