§6.2*–The Natural Logarithm Function

Tom Lewis

Fall Semester
2018

Outline

The log base 10
The natural logarithm
Further properties of the natural logarithm
The graph of the log function
The number e, Euler's number
Further derivative problems
Integration
Logarithmic differentiation
Problem

1. \(10^x = 100\)
2. \(10^x = 1/1000\)
3. \(10^x = -2\)
4. \(10^x = 5.386\)

Properties of the base 10 logarithm function

Here are some familiar properties of the base 10 logarithm function.

- \(\log_{10}(1) = 0, \log_{10}(10) = 1, \log_{10}(100) = 2\).
- \(\log_{10}(ab) = \log_{10}(a) + \log_{10}(b), a, b > 0\).
- \(\log_{10}(1/a) = -\log_{10}(a), a > 0\).
- \(\log_{10}(a/b) = \log_{10}(a) - \log_{10}(b)\).
- \(\log_{10}(a^r) = r \log_{10}(a), a > 0, r \text{ rational}\).
Definition (The natural logarithm function)

For $x > 0$, let

$$\ln(x) = \int_1^x \frac{1}{t} \, dt.$$

This function is called the **natural logarithm**.

Theorem (Elementary properties of \ln)

- $\ln(1) = 0$
- $\ln(x) < 0$ if $0 < x < 1$
- $\ln(x) > 0$ if $x > 1$
- $D_x \ln(x) = 1/x$. *In particular, $\ln(x)$ is an increasing function.*
Problem

*Show that $0.5 \leq \ln(2) \leq 1$.\n
Theorem

- $\ln(ab) = \ln(a) + \ln(b)$, $a, b > 0$.
- $\ln(a/b) = \ln(a) - \ln(b)$.
- $\ln(a^p) = p\ln(a)$, for $p > 0$, p rational. *(Homework)*
Theorem

- \(\ln \) is increasing and concave down.
- As \(x \to +\infty \), \(\ln(x) \to +\infty \).
- As \(x \to 0^+ \), \(\ln(x) \to -\infty \).

Problem

Sketch the graph of \(\ln(x) \).

Definition

- The range of \(\ln(x) \) is \((-\infty, \infty) \). Since \(\ln(x) \) is increasing, there exists a unique number \(e \) such that
 \[
 \ln(e) = 1.
 \]
- The number \(e \) is called Euler’s number. Note that
 \[
 e \approx 2.71828
 \]
- Since \(\ln(e) = 1 \), \(e \) is called the base of the natural logarithm function.
Theorem (The chain rule)

If \(f \) is a positive, differentiable function, then

\[
\frac{d}{dx} \ln f(x) = \frac{1}{f(x)} f'(x).
\]

Problem

Find \(\frac{dy}{dx} \) in each case:

- \(y = \ln(x^2) \)
- \(y = x^2(\ln(x^2 + 1))^3 \)
- \(y = \ln(|x|) \)
Theorem

\[\int \frac{1}{x} \, dx = \ln(|x|) + C. \]

Problem

Evaluate the following integrals:

- \[\int \frac{x^2}{x^3 + 1} \, dx \]
- \[\int_{-2}^{-1} (x + 1)^{-1} \, dx \]
- \[\int \tan(x) \, dx \]
Problem

Use the logarithm function and its properties to evaluate the derivative of

\[f(x) = \frac{x^2(x - 4)^3}{(x^2 + 1)^4}. \]