1. (3 points) Let \(f(x) = x^4 + 5 \).

 (a) Show that \(f(x) \) is one-to-one on the restricted domain \(D = [0, \infty) \).

 (b) What is the range of \(f \) on the set \(D \)?

 (c) Let \(f^{-1} \) denote the inverse of \(f \) on the set \(D \). Find an algebraic formula for \(f^{-1}(x) \). What are the domain and range of \(f^{-1} \).

2. (2 points) The graph of a function \(y = f(x) \) is pictured below. Graph \(y = f^{-1}(x) \) on the same axes.
3. (2 points) Let \(f(x) = x^3 + 2x \).
 (a) Show that \(f \) is invertible and find \(f^{-1}(12) \).

 (b) Evaluate \((f^{-1})'(12) \).

4. (3 points) Let \(f \) be a one-to-one and invertible function whose graph contains the point \(P(1, 2) \). If the tangent line to the curve \(y = f(x) \) at \(P \) is given by the equation \(y = \frac{1}{3}x + \frac{5}{3} \), then find \((f^{-1})'(2) \).