Appendix A: Numbers, Inequalities, and Absolute Values

Tom Lewis

Fall Semester
2015

Outline

Types of numbers

Notation for intervals

Inequalities

Absolute value
A hierarchy of numbers

Whole numbers 1, 2, 3, . . .; these are the natural counting numbers.

Integers . . . , −3, −2, −1, 0, 1, 2, 3, . . .; these are the whole numbers together with their additive inverses and 0. This is a useful abstraction of the whole numbers.

Rational numbers −3/2, 111/53, .77777 . . . These are numbers that can be represented in the form p/q where p and q are integers. For example,

Irrational numbers $\sqrt{2}$, π, $\sqrt{5}$. These are the real numbers which are not rational; their decimal expansions do not terminate nor do they repeat.

Problem

Classify each of the following numbers in its lowest possible number type.

- −6
- $3.134567676767 \ldots$
- $\frac{18}{5}$
- $\frac{\frac{4}{5} + \frac{2}{5}}{1 + \sqrt{3}}$
- $\sqrt{2}$
- $\sqrt{4 + \sqrt{12}}$
The real numbers as a set

The real numbers are **totally ordered**. This means that if we are given any two distinct real numbers \(x \) and \(y \), then they can be compared; thus, either

\[
 x > y \quad \text{or} \quad x < y.
\]

We can visualize the real numbers therefore in a (familiar) number line.

Subsets

- A subset of real numbers is any collection of real numbers.
- By far the most important subsets of real numbers are the **intervals**.
 - From a geometrical viewpoint, the intervals correspond to **connected segments** within the real line.
 - The endpoints may or not be contained in an interval. An interval can have infinite length.
We have two preferred notations: interval and set-builder notation.

Problem

Sketch the intervals given by $(-\infty, 2]$ and $\{x : -3 \leq x < 8\}$.

Problem

Consider the inequality:

$$2x + 5 < 4x + 8.$$

- What does it mean to solve the inequality?
- What kind of answer do we expect?
- How do we solve the inequality?
Solving inequalities

We can solve an inequality just as we would an equality with one exception: multiplication by a negative number. If $a < b$ and $c < 0$, then $ca > cb$.

Problem

1. Solve $3x + 12 < 6x - 18$ for x.

2. Find the set of all x such that

 $3 - 5x > -3$ \ and \ $3 - 5x < 18$.

3. Find the set of all x such that

 $3x - 4 > 8$ \ or \ $3x - 4 < -8$.

4. Find the set of all t such that $t^2 + 3t > 28$.
Definition (Absolute value)

Given a real number x, the absolute value of x, denoted by $|x|$, is the distance from the 0 (the origin) to x. We can think of $|x|$ as the length of the number x.

Problem

How can you make a simple calculator return the absolute value of an input?
Definition (Absolute value)

We can formulate a precise definition of $|x|$ as follows:

$$
|x| = \begin{cases}
 x & \text{if } x \geq 0 \\
 -x & \text{if } x < 0
\end{cases}.
$$

Problem

In each case, describe the indicated set as an interval or union of intervals:

- $|x| \leq 3$.
- $|x| > 2$.
- $|x| \leq -1$.
Problem

1. Solve $|x| = 8$.
2. Solve $|x| < 2$ and $|x| \geq 5$.
3. Solve $|x - 3| < 1$. What is the geometric meaning of this set?
4. Find a and b such that the solution set of $|x - a| < b$ is the interval $(-1, 7)$.
5. Solve $|2 - 3x| \geq 8$.
6. Solve the equation $|x + 2| = |3x - 1|$.

Some properties of absolute value

Let a and b be real numbers.

- $\sqrt{a^2} = |a|$ \\
- $|ab| = |a||b|$ \\
- $|a/b| = |a|/|b|$, provided that $b \neq 0$ \\
- $|a + b| \leq |a| + |b|$ (triangle inequality)
Problem

Suppose that $|x - 3| < .001$ and $|y - 5| < .002$. Use the triangle inequality to give an upper bound for $|(x + y) - 8|$.