# §8.8-Improper Integrals 

Mark Woodard

Furman U
Fall 2010

## Outline

(1) An overview
(2) Type I integrals: unbounded domains
(3) Type II integrals: unbounded integrands

What makes an integral improper?

## What makes an integral improper?

- Recall that the definite integral $\int_{a}^{b} f(x) d x$ is only defined for a bounded function $f$ on a bounded domain $[a, b]$. Thus the following integrals are improper:


## What makes an integral improper?

- Recall that the definite integral $\int_{a}^{b} f(x) d x$ is only defined for a bounded function $f$ on a bounded domain $[a, b]$. Thus the following integrals are improper:
- $\int_{0}^{\infty} e^{-x} d x$ is improper because the domain, $[0, \infty)$, is unbounded.


## What makes an integral improper?

- Recall that the definite integral $\int_{a}^{b} f(x) d x$ is only defined for a bounded function $f$ on a bounded domain $[a, b]$. Thus the following integrals are improper:
- $\int_{0}^{\infty} e^{-x} d x$ is improper because the domain, $[0, \infty)$, is unbounded.
- $\int_{0}^{1} x^{-1 / 2} d x$ is improper because the integrand has a vertical asymptote at 0 , which is in the domain of integration.


## What makes an integral improper?

- Recall that the definite integral $\int_{a}^{b} f(x) d x$ is only defined for a bounded function $f$ on a bounded domain $[a, b]$. Thus the following integrals are improper:
- $\int_{0}^{\infty} e^{-x} d x$ is improper because the domain, $[0, \infty)$, is unbounded.
- $\int_{0}^{1} x^{-1 / 2} d x$ is improper because the integrand has a vertical asymptote at 0 , which is in the domain of integration.
- $\int_{0}^{\infty} \frac{1}{x^{4 / 3}+x^{2 / 3}} d x$ is improper because the integrand is unbounded and the domain is unbounded.


## Type I: unbounded domains

## Type I: unbounded domains

- When the domain of integration is unbounded, we must solve the problem by limits:

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

whenever this limit exists.

## Type I: unbounded domains

- When the domain of integration is unbounded, we must solve the problem by limits:

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

whenever this limit exists.

- When this limit exists, we say that the improper integral $\int_{a}^{\infty} f(x) d x$ converges. When this limit does not exist, we say that the integral diverges.


## Type I: unbounded domains

- When the domain of integration is unbounded, we must solve the problem by limits:

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

whenever this limit exists.

- When this limit exists, we say that the improper integral $\int_{a}^{\infty} f(x) d x$ converges. When this limit does not exist, we say that the integral diverges.
- Likewise $\int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x$.


## Problem

Evaluate $\int_{1}^{\infty} x^{-2} d x$

## Problem

Evaluate $\int_{1}^{\infty} x^{-2} d x$

## Solution

## Problem

Evaluate $\int_{1}^{\infty} x^{-2} d x$

## Solution

- Let $b>1$ and observe that

$$
\int_{1}^{b} x^{-2} d x=-\left.x^{-1}\right|_{1} ^{b}=1-\frac{1}{b}
$$

## Problem

Evaluate $\int_{1}^{\infty} x^{-2} d x$

## Solution

- Let $b>1$ and observe that

$$
\int_{1}^{b} x^{-2} d x=-\left.x^{-1}\right|_{1} ^{b}=1-\frac{1}{b}
$$

- Since $\lim _{b \rightarrow \infty}\left(1-b^{-1}\right)=1$, we say

$$
\int_{1}^{\infty} x^{-2} d x=1
$$

## Problem

Evaluate $\int_{1}^{\infty} x^{-1} d x$

## Problem

Evaluate $\int_{1}^{\infty} x^{-1} d x$

## Solution

## Problem

Evaluate $\int_{1}^{\infty} x^{-1} d x$

## Solution

- Let $b>1$. Then

$$
\int_{1}^{b} x^{-1} d x=\left.\ln (x)\right|_{1} ^{b}=\ln (b)-\ln (1)=\ln (b)
$$

## Problem

Evaluate $\int_{1}^{\infty} x^{-1} d x$

## Solution

- Let $b>1$. Then

$$
\int_{1}^{b} x^{-1} d x=\left.\ln (x)\right|_{1} ^{b}=\ln (b)-\ln (1)=\ln (b)
$$

- Since $\lim _{b \rightarrow \infty} \ln (b)=+\infty$, we say that the integral diverges. However we will sometimes write

$$
\int_{1}^{\infty} x^{-1} d x=+\infty
$$

to indicate that the integral diverges in this particular way.

## Problem

Evaluate the following integrals:

## Problem

Evaluate the following integrals:

- $\int_{-\infty}^{0} e^{x} d x$


## Problem

Evaluate the following integrals:

- $\int_{-\infty}^{0} e^{x} d x$
$\int_{0}^{\infty} x^{2} e^{-x} d x$


## Problem

Evaluate the following integrals:

- $\int_{-\infty}^{0} e^{x} d x$
- $\int_{0}^{\infty} x^{2} e^{-x} d x$
- $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$ How should we define this?


## Problem

Evaluate the following integrals:

- $\int_{-\infty}^{0} e^{x} d x$
- $\int_{0}^{\infty} x^{2} e^{-x} d x$
- $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x$ How should we define this?
- $\int_{0}^{\infty} \frac{1}{x^{2}+3 x+2} d x$


## Type II integrals: unbounded integrands

## Type II integrals: unbounded integrands

- If $f$ is unbounded as $x \rightarrow a^{+}$, then we define

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x
$$

provided the limit exists.

## Type II integrals: unbounded integrands

- If $f$ is unbounded as $x \rightarrow a^{+}$, then we define

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow a^{+}} \int_{c}^{b} f(x) d x
$$

provided the limit exists.

- If $f$ is unbounded as $x \rightarrow b^{-}$, then we define

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow b^{-}} \int_{a}^{c} f(x) d x
$$

provided the limit exists.

## Problem

Evaluate $\int_{0}^{1} x^{-1 / 2} d x$

## Problem

Evaluate $\int_{0}^{1} x^{-1 / 2} d x$

## Solution

## Problem

Evaluate $\int_{0}^{1} x^{-1 / 2} d x$.

## Solution

- Let $0<c<1$ and observe that

$$
\int_{c}^{1} x^{-1 / 2} d x=\left.2 x^{1 / 2}\right|_{c} ^{1}=2-2 \sqrt{c}
$$

## Problem

Evaluate $\int_{0}^{1} x^{-1 / 2} d x$.

## Solution

- Let $0<c<1$ and observe that

$$
\int_{c}^{1} x^{-1 / 2} d x=\left.2 x^{1 / 2}\right|_{c} ^{1}=2-2 \sqrt{c}
$$

- Since $\lim _{c \rightarrow 0^{+}}(2-2 \sqrt{c})=2$.


## Problem

Evaluate $\int_{0}^{1} x^{-1 / 2} d x$.

## Solution

- Let $0<c<1$ and observe that

$$
\int_{c}^{1} x^{-1 / 2} d x=\left.2 x^{1 / 2}\right|_{c} ^{1}=2-2 \sqrt{c}
$$

- Since $\lim _{c \rightarrow 0^{+}}(2-2 \sqrt{c})=2$.
- Thus $\int_{0}^{1} x^{-1 / 2} d x=2$.


## Problem

## Problem

- $\int_{-8}^{1} x^{-2 / 3} d x \quad$ How shall we define this?


## Problem

- $\int_{-8}^{1} x^{-2 / 3} d x \quad$ How shall we define this?
- $\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} d x$


## Problem

- $\int_{-8}^{1} x^{-2 / 3} d x \quad$ How shall we define this?
- $\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} d x$


## Problem

Here is an integral of Type I and Type II. Evaluate $\int_{0}^{\infty} \frac{1}{x^{4 / 3}+x^{2 / 3}} d x$

