§8.8–Improper Integrals

Mark Woodard

Furman U

Fall 2010
Outline

1. An overview

2. Type I integrals: unbounded domains

3. Type II integrals: unbounded integrands
An overview

What makes an integral improper?

Recall that the definite integral
\[\int_a^b f(x) \, dx \]
is only defined for a bounded function \(f \) on a bounded domain \([a, b]\).

Thus the following integrals are improper:

\[\int_0^\infty e^{-x} \, dx \text{ is improper because the domain, } [0, \infty), \text{ is unbounded.} \]

\[\int_0^1 x^{-1/2} \, dx \text{ is improper because the integrand has a vertical asymptote at } 0, \text{ which is in the domain of integration.} \]

\[\int_0^{\infty} \frac{1}{x^{4/3} + x^{2/3}} \, dx \text{ is improper because the integrand is unbounded and the domain is unbounded.} \]
An overview

What makes an integral improper?

- Recall that the definite integral $\int_a^b f(x)\,dx$ is only defined for a *bounded* function f on a *bounded* domain $[a, b]$. Thus the following integrals are *improper*:

 \[\int_0^\infty e^{-x}\,dx \text{ is improper because the domain, } [0, \infty), \text{ is unbounded.} \]

 \[\int_0^1 \frac{x^{-1/2}}{2}\,dx \text{ is improper because the integrand has a vertical asymptote at } 0, \text{ which is in the domain of integration.} \]

 \[\int_0^\infty \left(\frac{1}{x^{4/3}} + \frac{1}{x^{2/3}} \right)\,dx \text{ is improper because the integrand is unbounded and the domain is unbounded.} \]
What makes an integral improper?

- Recall that the definite integral $\int_a^b f(x)\,dx$ is only defined for a bounded function f on a bounded domain $[a, b]$. Thus the following integrals are improper:
 - $\int_0^\infty e^{-x}\,dx$ is improper because the domain, $[0, \infty)$, is unbounded.
What makes an integral improper?

- Recall that the definite integral $\int_a^b f(x)\,dx$ is only defined for a bounded function f on a bounded domain $[a, b]$. Thus the following integrals are improper:

 - $\int_0^\infty e^{-x}\,dx$ is improper because the domain, $[0, \infty)$, is unbounded.

 - $\int_0^1 x^{-1/2}\,dx$ is improper because the integrand has a vertical asymptote at 0, which is in the domain of integration.
What makes an integral improper?

- Recall that the definite integral \(\int_a^b f(x)\,dx \) is only defined for a *bounded* function \(f \) on a *bounded* domain \([a, b]\). Thus the following integrals are *improper*:
 - \(\int_0^{\infty} e^{-x}\,dx \) is improper because the domain, \([0, \infty)\), is unbounded.
 - \(\int_0^1 x^{-1/2}\,dx \) is improper because the integrand has a vertical asymptote at 0, which is in the domain of integration.
 - \(\int_0^{\infty} \frac{1}{x^{4/3} + x^{2/3}}\,dx \) is improper because the integrand is unbounded and the domain is unbounded.
Type I: unbounded domains

When the domain of integration is unbounded, we must solve the problem by limits:

\[\int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \, dx, \]

whenever this limit exists.

When this limit exists, we say that the improper integral \(\int_{a}^{\infty} f(x) \, dx \) converges. When this limit does not exist, we say that the integral diverges.

Likewise \(\int_{-\infty}^{b} f(x) \, dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) \, dx \).
Type I: unbounded domains

When the domain of integration is unbounded, we must solve the problem by limits:

\[\int_a^\infty f(x) \, dx = \lim_{b \to \infty} \int_a^b f(x) \, dx, \]

whenever this limit exists.

When this limit exists, we say that the improper integral \(\int_a^\infty f(x) \, dx \) converges. When this limit does not exist, we say that the integral diverges.
Type I: unbounded domains

- When the domain of integration is unbounded, we must solve the problem by limits:

\[\int_a^\infty f(x) \, dx = \lim_{b \to \infty} \int_a^b f(x) \, dx, \]

whenever this limit exists.

- When this limit exists, we say that the improper integral \(\int_a^\infty f(x) \, dx \) converges. When this limit does not exist, we say that the integral diverges.
Type I: unbounded domains

- When the domain of integration is unbounded, we must solve the problem by limits:

\[
\int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \, dx,
\]

whenever this limit exists.

- When this limit exists, we say that the improper integral \(\int_{a}^{\infty} f(x) \, dx \) converges. When this limit does not exist, we say that the integral diverges.

- Likewise \(\int_{-\infty}^{b} f(x) \, dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) \, dx. \)
Problem

Evaluate \(\int_{1}^{\infty} x^{-2} \, dx \)
Problem

Evaluate \(\int_{1}^{\infty} x^{-2} \, dx \)

Solution

Let \(b > 1 \) and observe that

\[
\int_{1}^{b} x^{-2} \, dx = \left[-x^{-1} \right]_{1}^{b} = 1 - b^{-1}.
\]

Since \(\lim_{b \to \infty} (1 - b^{-1}) = 1 \), we say

\[
\int_{1}^{\infty} x^{-2} \, dx = 1.
\]
Problem

Evaluate \(\int_{1}^{\infty} x^{-2} \, dx \)

Solution

- Let \(b > 1 \) and observe that

\[
\int_{1}^{b} x^{-2} \, dx = -x^{-1} \bigg|_{1}^{b} = 1 - \frac{1}{b}.
\]
Problem

Evaluate \(\int_{1}^{\infty} x^{-2} \, dx \)

Solution

- Let \(b > 1 \) and observe that
 \[
 \int_{1}^{b} x^{-2} \, dx = -x^{-1} \bigg|_{1}^{b} = 1 - \frac{1}{b}.
 \]

- Since \(\lim_{b \to \infty} \left(1 - b^{-1} \right) = 1 \), we say
 \[
 \int_{1}^{\infty} x^{-2} \, dx = 1.
 \]
Problem

Evaluate \(\int_{1}^{\infty} x^{-1} \, dx \)
Problem

Evaluate \(\int_1^{\infty} x^{-1} \, dx \)

Solution

Let \(b > 1 \). Then
\[
\int_1^{b} x^{-1} \, dx = \ln(x) \bigg|_1^b = \ln(b) - \ln(1) = \ln(b).
\]
Since \(\lim_{b \to \infty} \ln(b) = +\infty \), we say that the integral diverges.
However we will sometimes write \(\int_1^{\infty} x^{-1} \, dx = +\infty \) to indicate that the integral diverges in this particular way.
Problem

Evaluate \(\int_1^\infty x^{-1} \, dx \)

Solution

Let \(b > 1 \). Then

\[
\int_1^b x^{-1} \, dx = \ln(x) \bigg|_1^b = \ln(b) - \ln(1) = \ln(b).
\]
Problem

Evaluate $\int_1^\infty x^{-1} \, dx$

Solution

- Let $b > 1$. Then

 $$\int_1^b x^{-1} \, dx = \ln(x) \bigg|_1^b = \ln(b) - \ln(1) = \ln(b).$$

- Since $\lim_{b \to \infty} \ln(b) = +\infty$, we say that the integral diverges. However we will sometimes write

 $$\int_1^\infty x^{-1} \, dx = +\infty$$

 to indicate that the integral diverges in this particular way.
Problem

Evaluate the following integrals:
Problem

Evaluate the following integrals:

- \(\int_{-\infty}^{0} e^x \, dx \)
Problem

Evaluate the following integrals:

1. $\int_{-\infty}^{0} e^x \, dx$
2. $\int_{0}^{\infty} x^2 e^{-x} \, dx$
3. $\int_{-\infty}^{\infty} \frac{1}{1 + x^2} \, dx$
Problem

Evaluate the following integrals:

- $\int_{-\infty}^{0} e^x \, dx$
- $\int_{0}^{\infty} x^2 e^{-x} \, dx$
- $\int_{-\infty}^{\infty} \frac{1}{1 + x^2} \, dx$ \textit{How should we define this?}
Problem

Evaluate the following integrals:

1. \(\int_{-\infty}^{0} e^x \, dx \)
2. \(\int_{0}^{\infty} x^2 e^{-x} \, dx \)
3. \(\int_{0}^{\infty} \frac{1}{1 + x^2} \, dx \) \text{How should we define this?}
4. \(\int_{-\infty}^{\infty} \frac{1}{x^2 + 3x + 2} \, dx \)
Type II integrals: unbounded integrands

If \(f \) is unbounded as \(x \to a^+ \), then we define
\[
\int_a^b f(x) \, dx = \lim_{c \to a^+} \int_a^c f(x) \, dx,
\]
provided the limit exists.

If \(f \) is unbounded as \(x \to b^- \), then we define
\[
\int_a^b f(x) \, dx = \lim_{c \to b^-} \int_c^b f(x) \, dx,
\]
provided the limit exists.
Type II integrals: unbounded integrands

- If \(f \) is unbounded as \(x \to a^+ \), then we define

\[
\int_a^b f(x) \, dx = \lim_{c \to a^+} \int_c^b f(x) \, dx,
\]

provided the limit exists.
Type II integrals: unbounded integrands

- If f is unbounded as $x \to a^+$, then we define
 \[
 \int_a^b f(x) \, dx = \lim_{c \to a^+} \int_c^b f(x) \, dx,
 \]
 provided the limit exists.

- If f is unbounded as $x \to b^-$, then we define
 \[
 \int_a^b f(x) \, dx = \lim_{c \to b^-} \int_a^c f(x) \, dx,
 \]
 provided the limit exists.
Problem

Evaluate \(\int_{0}^{1} x^{-1/2} \, dx \).
Problem

Evaluate \(\int_0^1 x^{-1/2} \, dx \).

Solution

Let \(0 < c < 1 \) and observe that

\[
\int_1^c x^{-1/2} \, dx = 2x^{1/2} \bigg|_{1}^{c} = 2 - 2\sqrt{c}.
\]

Since \(\lim_{c \to 0^+} (2 - 2\sqrt{c}) = 2 \),

Thus \(\int_0^1 x^{-1/2} \, dx = 2 \).
Problem

Evaluate \(\int_0^1 x^{-1/2} \, dx \).

Solution

Let \(0 < c < 1 \) and observe that

\[
\int_c^1 x^{-1/2} \, dx = 2x^{1/2} \bigg|_{1}^{1} = 2 - 2\sqrt{c}.
\]
Problem

Evaluate \(\int_0^1 x^{-1/2} \, dx \).

Solution

- Let \(0 < c < 1 \) and observe that
 \[
 \int_c^1 x^{-1/2} \, dx = 2x^{1/2} \bigg|_c^1 = 2 - 2\sqrt{c}.
 \]

- Since \(\lim_{c \to 0^+} (2 - 2\sqrt{c}) = 2 \).
Problem

Evaluate $\int_0^1 x^{-1/2} \, dx$.

Solution

- Let $0 < c < 1$ and observe that

$$\int_c^1 x^{-1/2} \, dx = 2x^{1/2} \bigg|_c^1 = 2 - 2\sqrt{c}.$$

- Since $\lim_{c \to 0^+} (2 - 2\sqrt{c}) = 2$.

- Thus $\int_0^1 x^{-1/2} \, dx = 2$.
Problem

Problem

Here is an integral of Type I and Type II. Evaluate

\[\int_{0}^{\infty} \frac{1}{x^{4/3} + x^{2/3}} \, dx \]
Problem

\[\int_{-8}^{1} x^{-2/3} \, dx \quad \text{How shall we define this?} \]
Problem

\[\int_{-8}^{1} x^{-2/3} \, dx \quad \text{How shall we define this?} \]

\[\int_{0}^{1} \frac{x^2}{\sqrt{1 - x^2}} \, dx \]
Problem

- $\int_{-8}^{1} x^{-2/3} \, dx$ \textit{How shall we define this?}
- $\int_{0}^{1} \frac{x^2}{\sqrt{1-x^2}} \, dx$

Problem

\textit{Here is an integral of Type I and Type II. Evaluate} $\int_{0}^{\infty} \frac{1}{x^{4/3} + x^{2/3}} \, dx$