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Definition and examples

Problem

For each x , consider the series

S(x) =
∞∑

n=0

1

n + 1
xn = 1 +

1

2
x +

1

3
x2 + · · ·

There are two natural questions to ask about this series:

For which values of x , does this converge?

Is this a recognizable function?
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Definition and examples

Definition

Let {cn} be a sequence of real numbers.

A power series is an infinite series of the form

f (x) =
∞∑

n=0

cnxn = c0 + c1x1 + c2x2 + · · · , x ∈ R.

The numbers {cn} are called the coefficients of the power series.

Given a number a, we define the power series centered at a by

f (x) =
∞∑

n=0

cn(x − a)n

= c0 + c1(x − a)1 + c2(x − a)2 + · · · , x ∈ R.
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Definition and examples

Problem

Where do the following series converge?

∞∑
n=1

(x − 3)n

n2

∞∑
n=1

xn

n!
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The radius of convergence

Theorem

Given a power series
∞∑

n=0

cn(x − a)n, there are three possibilities:

The series will converge only at a.

There is a number positive number R such that the series converges
for |x − a| < R and diverges for |x − a| > R.

The series converges for all real numbers.

The radius of convergence

The number R is called the radius of convergence. We can think of these
three cases accordingly: R = 0, 0 < R <∞, or R =∞.
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The radius of convergence

Definition

The interval of convergence of the power series
∞∑

n=0

cn(x − a)n is the

interval consisting of all values x for which the power series converges.

Theorem

Let R be the radius of convergence of the power series
∞∑

n=0

cn(x − a)n.

If R = 0, then the interval of convergence is the point {a} only.

If R =∞, then the interval of convergence is (−∞, +∞).

If 0 < R <∞, then the interval of convergence can be any one of the
following:

(a− R, a + R), [a− R, a + R), (a− R, a + R], [a− R, a + R].
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The radius of convergence

Problem

Find the radius and interval of convergence of the power series:

∞∑
n=0

2n(x − 5)n

∞∑
n=0

(x + 2)n

3n(n + 1)

∞∑
n=1

n!xn
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