$\S12.6$ –Ratio Test, Root Test, Absolute Convergence

Mark Woodard

Furman U

Fall 2010

Mark Woodard (Furman U) §12.6 –Ratio Test, Root Test, Absolute Conve

Fall 2010 1 / 10

(3)

2 The ratio test

Mark Woodard (Furman U) §12.6 -Ratio Test, Root Test, Absolute Conv

A (10) A (10) A (10)

If $\sum |a_n|$ converges, then $\sum a_n$ converges.

Mark Woodard (Furman U) §12.6 –Ratio Test, Root Test, Absolute Conv

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $\sum |a_n|$ converges, then $\sum a_n$ converges.

Proof.

Mark Woodard (Furman U) §12.6 –Ratio Test, Root Test, Absolute Conv

<ロ> (日) (日) (日) (日) (日)

If $\sum |a_n|$ converges, then $\sum a_n$ converges.

Proof.

• We have $-|a_n| \le a_n \le |a_n|$; thus, $0 \le a_n + |a_n| \le 2|a_n|$.

- 4 週 ト - 4 三 ト - 4 三 ト

If $\sum |a_n|$ converges, then $\sum a_n$ converges.

Proof.

- We have $-|a_n| \le a_n \le |a_n|$; thus, $0 \le a_n + |a_n| \le 2|a_n|$.
- Thus the series $\sum (a_n + |a_n|)$ converges by SCT.

< 回 ト < 三 ト < 三 ト

If $\sum |a_n|$ converges, then $\sum a_n$ converges.

Proof.

- We have $-|a_n| \le a_n \le |a_n|$; thus, $0 \le a_n + |a_n| \le 2|a_n|$.
- Thus the series $\sum (a_n + |a_n|)$ converges by SCT.
- By hypothesis, the series $\sum -|a_n|$ converges.

・ 同 ト ・ 三 ト ・ 三 ト

If $\sum |a_n|$ converges, then $\sum a_n$ converges.

Proof.

- We have $-|a_n| \le a_n \le |a_n|$; thus, $0 \le a_n + |a_n| \le 2|a_n|$.
- Thus the series $\sum (a_n + |a_n|)$ converges by SCT.
- By hypothesis, the series $\sum -|a_n|$ converges.
- Consequently,

$$\sum a_n = \sum \left(\left(a_n + |a_n| \right) - |a_n| \right)$$

converges as well.

< 回 ト < 三 ト < 三 ト

Examine the convergence of the following series:

イロト イヨト イヨト イヨト

Examine the convergence of the following series:

イロト イヨト イヨト イヨト

Examine the convergence of the following series:

•
$$\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2}$$

•
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n+2}{\sqrt{n^5+8}}$$

Definition

Mark Woodard (Furman U) §12.6 –Ratio Test, Root Test, Absolute Conv

イロン イヨン イヨン イヨン

Definition

If the series ∑ |a_n| converges, then we say that the series ∑ a_n converges absolutely.

< 回 > < 三 > < 三 >

Definition

- If the series $\sum |a_n|$ converges, then we say that the series $\sum a_n$ converges *absolutely*.
- if the series $\sum a_n$ converges but $\sum |a_n|$ diverges, then we say that the series $\sum a_n$ converges *conditionally*.

通 ト イヨ ト イヨト

Does the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 converge absolutely, converge conditionally, or diverge?

<ロ> (日) (日) (日) (日) (日)

Does the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 converge absolutely, converge conditionally, or diverge?

Solution

<ロ> (日) (日) (日) (日) (日)

Does the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 converge absolutely, converge conditionally, or diverge?

Solution

• The series of absolute values diverges by PST, p = 1.

A B A A B A

< A

Does the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 converge absolutely, converge conditionally, or diverge?

Solution

- The series of absolute values diverges by PST, p = 1.
- The series converges by the AST.

A B F A B F

Does the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 converge absolutely, converge conditionally, or diverge?

Solution

- The series of absolute values diverges by PST, p = 1.
- The series converges by the AST.
- Thus the series converges conditionally.

() <) <)</p>

Let $\{a_n\}$ be a sequence of nonzero real numbers and suppose that

$$\frac{|a_{n+1}|}{|a_n|} \to L$$

A B F A B F

- ∢ 🗇 እ

Let $\{a_n\}$ be a sequence of nonzero real numbers and suppose that

$$\frac{|a_{n+1}|}{|a_n|} \to L$$

• If L < 1, then $\sum a_n$ converges absolutely.

()

Let $\{a_n\}$ be a sequence of nonzero real numbers and suppose that

$$rac{|a_{n+1}|}{|a_n|}
ightarrow L$$

If L < 1, then ∑ a_n converges absolutely.
If L > 1, then ∑ a_n diverges.

< 3 > < 3 >

Let $\{a_n\}$ be a sequence of nonzero real numbers and suppose that

$$rac{|a_{n+1}|}{|a_n|}
ightarrow L$$

- If L < 1, then $\sum a_n$ converges absolutely.
- If L > 1, then $\sum a_n$ diverges.
- If *L* = 1, then the test is inconclusive; the series may or may not converge.

< 3 > < 3 >

Determine the convergence or divergence of the following series:

Determine the convergence or divergence of the following series:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Determine the convergence or divergence of the following series:

•
$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$
•
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

Determine the convergence or divergence of the following series:

•
$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$
•
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$
•
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

Determine the convergence or divergence of the following series:

•
$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$

•
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

•
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

•
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

Suppose $|a_n|^{1/n} \to L$.

Suppose $|a_n|^{1/n} \rightarrow L$.

• If L < 1, then $\sum a_n$ converges absolutely.

イロト 不得下 イヨト イヨト 二日

Suppose $|a_n|^{1/n} \rightarrow L$.

- If L < 1, then $\sum a_n$ converges absolutely.
- If L > 1, then $\sum a_n$ diverges.

Suppose $|a_n|^{1/n} \rightarrow L$.

- If L < 1, then $\sum a_n$ converges absolutely.
- If L > 1, then $\sum a_n$ diverges.
- If L = 1, then the test is inconclusive; the series may or may not converge.

・ 同 ト ・ ヨ ト ・ ヨ ト

Determine whether the series $\sum_{n=1}^{\infty} \left(\frac{1}{5n}\right)^n$

ries
$$\sum_{n=1}^{\infty} \left(\frac{3n}{5n+6}\right)^n$$
 converges.

<ロ> (日) (日) (日) (日) (日)

Determine whether the series
$$\sum_{n=1}^{\infty} \left(\frac{3n}{5n+6}\right)^n$$
 converges.

Solution

Since

$$|a_n|^{1/n} = rac{3n}{5n+6} o rac{3}{5} < 1,$$

the series converges by the Root Test.