$\S12.4$ –Comparison Tests

Mark Woodard

Furman University

Fall 2010

Mark Woodard (Furman University)

§12.4-Comparison Tests

Outline

Definition

Let p > 0. A *p*-series is any series of the form

$$\sum_{k=1}^{\infty} \frac{1}{k^p}.$$

イロト イポト イヨト イヨト

Definition

Let p > 0. A *p*-series is any series of the form

$$\sum_{k=1}^{\infty} \frac{1}{k^p}.$$

Example

The harmonic series is a *p*-series with p = 1.

- 4 同 6 4 日 6 4 日 6

Definition

Let p > 0. A *p*-series is any series of the form

$$\sum_{k=1}^{\infty} \frac{1}{k^p}.$$

Example

The harmonic series is a *p*-series with p = 1.

Theorem (The *p*-Series Test (PST))

A p-series converges if p > 1 and diverges if 0 .

- 4 週 ト - 4 三 ト - 4 三 ト

The idea behind a comparison test is this: given a series $\sum a_n$ construct a reference series $\sum b_n$ in such a way that the convergence or divergence of $\sum a_n$ can be inferred from that of $\sum b_n$.

< 回 ト < 三 ト < 三 ト

The idea behind a comparison test is this: given a series $\sum a_n$ construct a reference series $\sum b_n$ in such a way that the convergence or divergence of $\sum a_n$ can be inferred from that of $\sum b_n$.

Theorem (Simple Comparison Test (SCT))

Suppose that $0 < a_n \leq b_n$ for $n \geq 1$.

< 回 ト < 三 ト < 三 ト

The idea behind a comparison test is this: given a series $\sum a_n$ construct a reference series $\sum b_n$ in such a way that the convergence or divergence of $\sum a_n$ can be inferred from that of $\sum b_n$.

Theorem (Simple Comparison Test (SCT))

Suppose that $0 < a_n \leq b_n$ for $n \geq 1$.

• If $\sum b_n$ converges, then $\sum a_n$ converges.

The idea behind a comparison test is this: given a series $\sum a_n$ construct a reference series $\sum b_n$ in such a way that the convergence or divergence of $\sum a_n$ can be inferred from that of $\sum b_n$.

Theorem (Simple Comparison Test (SCT))

Suppose that $0 < a_n \leq b_n$ for $n \geq 1$.

- If $\sum b_n$ converges, then $\sum a_n$ converges.
- If $\sum a_n$ diverges, then $\sum b_n$ diverges.

イロト 不得下 イヨト イヨト 二日

イロト イヨト イヨト イヨト

• Let $s_n = a_1 + \cdots + a_n$ and let $t_n = b_1 + \cdots + b_n$. Then we know that $s_n \leq t_n$ for $n \geq 1$.

- Let $s_n = a_1 + \cdots + a_n$ and let $t_n = b_1 + \cdots + b_n$. Then we know that $s_n \leq t_n$ for $n \geq 1$.
- If $\sum b_n$ converges, then t_n is bounded above and, hence, so is s_n ; thus, s_n converges.

A B A A B A

- Let $s_n = a_1 + \cdots + a_n$ and let $t_n = b_1 + \cdots + b_n$. Then we know that $s_n \leq t_n$ for $n \geq 1$.
- If $\sum b_n$ converges, then t_n is bounded above and, hence, so is s_n ; thus, s_n converges.
- If ∑ a_n diverges, then s_n is not bounded above and, hence, t_n is not bounded above either; thus, t_n diverges.

A B b

Determine the convergence or divergence of the following series:

Determine the convergence or divergence of the following series:

•
$$\sum_{n=1}^{\infty} \frac{\ln(n+2)}{n}$$

イロト イヨト イヨト イヨト

Determine the convergence or divergence of the following series:

•
$$\sum_{n=1}^{\infty} \frac{\ln(n+2)}{n}$$
•
$$\sum_{n=1}^{\infty} \frac{1}{n^2+9}$$

Determine the convergence or divergence of the following series:

•
$$\sum_{n=1}^{\infty} \frac{\ln(n+2)}{n}$$
•
$$\sum_{n=1}^{\infty} \frac{1}{n^2+9}$$
•
$$\sum_{n=1}^{\infty} \frac{1}{2^n-1}$$

Determine the convergence or divergence of the following series:

•
$$\sum_{n=1}^{\infty} \frac{\ln(n+2)}{n}$$

•
$$\sum_{n=1}^{\infty} \frac{1}{n^2+9}$$

•
$$\sum_{n=1}^{\infty} \frac{1}{2^n-1}$$

•
$$\sum_{n=1}^{\infty} \frac{2-\sin(n)}{n}$$

Theorem (The Limit Comparison Test (LCT))

If $\{a_n\}$ and $\{b_n\}$ are sequences of positive numbers with $a_n/b_n \rightarrow c$ and if $0 < c < \infty$, then the series $\sum a_n$ and $\sum b_n$ converge or diverge together.

(人間) トイヨト イヨト

・ロト ・四ト ・ヨト ・ヨト

• There exists N such that $|a_n/b_n - c| < c/2$ for $n \ge N$.

Mark Woodard (Furman University)

イロト イポト イヨト イヨト

- There exists N such that $|a_n/b_n c| < c/2$ for $n \ge N$.
- In other words, for $n \ge N$,

$$rac{c}{2} \cdot b_n \leq a_n \leq rac{3c}{2} \cdot b_n$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- There exists N such that $|a_n/b_n c| < c/2$ for $n \ge N$.
- In other words, for $n \ge N$,

$$rac{c}{2} \cdot b_n \leq \mathsf{a}_n \leq rac{3c}{2} \cdot b_n$$

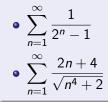
• Now the result follows from the SCT.

Determine the convergence or divergence of the following series:

Determine the convergence or divergence of the following series:

<ロ> (日) (日) (日) (日) (日)

Determine the convergence or divergence of the following series:



<ロト < 団ト < 団ト < 団ト

Solution

• We compare with $1/2^n$:

$$\frac{1/(2^n-1)}{1/2^n} = \frac{2^n}{2^n-1} = \frac{1}{1-2^{-n}}$$

and $\lim_{n\to\infty} \frac{1}{1-2^{-n}} = 1$. The comparison is valid. Since $\sum 1/2^n$ converges (being geometric), $\sum 1/(2^n - 1)$ converges by LCT.

Solution

• We compare with $1/2^n$:

$$\frac{1/(2^n-1)}{1/2^n} = \frac{2^n}{2^n-1} = \frac{1}{1-2^{-n}}$$

and $\lim_{n\to\infty} \frac{1}{1-2^{-n}} = 1$. The comparison is valid. Since $\sum 1/2^n$ converges (being geometric), $\sum 1/(2^n - 1)$ converges by LCT.

• We compare with 1/n:

$$\frac{(2n+4)/\sqrt{n^4+2}}{1/n} = \frac{2n^2+4n}{\sqrt{n^4+2}} = \frac{2+\frac{4}{n}}{\sqrt{1+\frac{2}{n^4}}}$$

and $\lim_{n\to\infty} \frac{2+\frac{4}{n}}{\sqrt{1+\frac{2}{n^4}}} = 2$. The comparison is valid. Since $\sum 1/n$ diverges (PST, p = 1), $\sum (2n+4)/\sqrt{n^4+2}$ diverges by LCT.