§12.3–The Integral Test

Mark Woodard

Furman University

Fall 2010

Outline

1 The Integral test

Theorem

A series $\sum a_n$ composed of nonnegative terms converges if and only if the sequence of partial sums is bounded above.

Theorem

A series $\sum a_n$ composed of nonnegative terms converges if and only if the sequence of partial sums is bounded above.

Theorem

If f(x) is continuous, nonnegative, and decreasing on the interval $[1,\infty)$, then

$$\sum_{n=1}^{\infty} f(n) \quad \text{and} \quad \int_{1}^{\infty} f(x) dx$$

converge or diverge together.

• Let
$$s_n = f(1) + f(2) + \cdots + f(n)$$
.

- Let $s_n = f(1) + f(2) + \cdots + f(n)$.
- By comparing areas, we find that

$$f(k+1) \le \int_k^{k+1} f(x) dx \le f(k)$$

for $k \ge 1$.

- Let $s_n = f(1) + f(2) + \cdots + f(n)$.
- By comparing areas, we find that

$$f(k+1) \le \int_k^{k+1} f(x) dx \le f(k)$$

for $k \geq 1$.

Thus

$$\int_1^{n+1} f(x)dx \le s_n \le f(1) + \int_1^n f(x)dx.$$

- Let $s_n = f(1) + f(2) + \cdots + f(n)$.
- By comparing areas, we find that

$$f(k+1) \le \int_k^{k+1} f(x) dx \le f(k)$$

for k > 1.

Thus

$$\int_1^{n+1} f(x)dx \leq s_n \leq f(1) + \int_1^n f(x)dx.$$

• If the integral converges, then so does s_n ; if s_n converges, so does the integral.

$$\bullet \sum_{k=1}^{\infty} \frac{1}{k}$$

$$\bullet \ \sum_{k=1}^{\infty} \frac{1}{k}$$

$$\bullet \ \sum_{k=1}^{\infty} \frac{1}{k^2}$$

$$\bullet \ \sum_{k=1}^{\infty} \frac{1}{k}$$

$$\bullet \ \sum_{k=1}^{\infty} \frac{1}{k^2}$$

$$\bullet \sum_{k=1}^{\infty} \frac{1}{k(k+1)}$$

$$\bullet \ \sum_{k=1}^{\infty} \frac{1}{k}$$

$$\bullet \ \sum_{k=1}^{\infty} \frac{1}{k^2}$$

$$\bullet \sum_{k=1}^{\infty} \frac{1}{k(k+1)}$$

$$\bullet \sum_{k=2}^{\infty} \frac{1}{k(\ln(k))^2}$$