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Some problems to set the stage

Problem

Evaluate the following infinite sums:

S = 1 +
1

2
+

1

4
+

1

8
+ · · ·

S = 1 + 2 + 4 + 8 + · · ·
S = 1 + (−1) + 1 + (−1) + · · ·

Commentary

The preceding examples underscore the need for a proper definition of the
sum of an infinite series.
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The proper definition

Definition

Given a sequence {an} of real numbers, we form a new sequence as
follows:

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

...

The sequence {sn} is called the sequence of partial sums.

If sn → L, then we say that the infinite series
∑∞

k=1 ak converges and
we write

∞∑
k=1

ak = L.

If {sn} diverges, then we say that the infinite series
∑∞

k=1 ak diverges.
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The proper definition

Definition

A series
∑

an is a collection of two sequences: the sequence of terms
{an} and the sequence of partial sums {sn} where sn = a1 + a2 + · · ·+ an.
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The proper definition

Problem

Determine whether or not the series
∑∞

k=1(−1)k+1 converges.

Solution

Let sn denote the nth partial sum of the series. It is easy to see that
sn = 1 if n is odd and sn = 0 if n is even.

Since the sequence 0, 1, 0, 1, . . . does not converge, the infinite series∑∞
k=1(−1)k+1 diverges.
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The geometric series

Definition

Let a, r 6= 0. Any series of the form

∞∑
k=1

ark−1 = a + ar 1 + ar 2 + ar 3 + · · ·

is called a geometric series. The number r is called the common ratio of
the series.

Theorem

∞∑
k=1

ark−1

=
a

1− r
if |r | < 1

diverges if |r | ≥ 1
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The geometric series

Problem

Evaluate the series
∑∞

k=1 5(1/3)k+2.

Solution

The series
5(1/3)3 + 5(1/3)4 + 5(1/3)5 + · · ·

is geometric with a = 5/27 and r = 1/3. Thus the series converges to

(5/27)

1− (1/3)
=

5

18
.
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The geometric series

Problem

A certain super ball has the property that it will always return to 60
percent of the maximum height of the previous bounce. If a ball is
dropped from 20 feet, how far will it fall?

Solution

The total distance is the infinite series

20 + 2(.6)(20) + 2(.6)2(20) + 2(.6)3(20) + · · ·︸ ︷︷ ︸
geometric part

= 20 +
24

1− .6

= 20 + 60

= 80
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Telescoping series

Problem

Find the sum of the series
∞∑

k=1

1

k2 + k
.

Solution

By a partial fraction decomposition, 1
k2+k

= 1
k −

1
k+1 .

Thus it can be shown that sn = 1− 1
n+1 .

Since sn → 1 as n→∞, we conclude that the series converges to 1.
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The harmonic series

Problem

Show that the harmonic series

∞∑
k=1

1

k
= 1 +

1

2
+

1

3
+ · · ·

diverges.
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The harmonic series

Solution

Consider s8 and observe that

s8 = 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
≥ 1 +

1

2
+ 2

1

4
+ 4

1

8

= 1 +
3

2

In general, s2n ≥ 1 + n
2 , which show that sn →∞ as n→∞.
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A test for divergence

Theorem (nth Term Test for Divergence)

If an 6→ 0, then the series
∑∞

n=1 an diverges.

Proof.

We will prove the contrapositive; namely, if the series converges, then
the nth term converges to 0.

Let us assume that
∑∞

k=1 ak converges and let {sn} denote the
corresponding sequence of partial sums.

Thus sn → L for some limit L.

It is also the case that sn−1 → L.

Thus an = (sn − sn−1)→ L− L = 0, as was to be shown.
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A test for divergence

Problem

Does the series
∑∞

k=1(1 + k−1)k converge?

Solution

Since (1 + k−1)k → e 6= 0, the series diverges by the nth Term Test.
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Some useful theorems on series

Theorem

Suppose that
∑

an and
∑

bn are convergent series and let c be a
constant. Then

∑
(an + bn) =

∑
an +

∑
bn∑

(an − bn) =
∑

an −
∑

bn∑
can = c

∑
an
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Some useful theorems on series

Problem

Find the sum of the series
∞∑

k=1

(
1

k2 + k
+ 5(.5)k+3

)
.

Solution

We have already observed that
∑∞

k=1
1

k2+k
= 1.

The series
∑∞

k=1 5(.5)k+3 = 5/8, being geometric.

Thus the original series converges to 1 + 5/8 = 13/8.
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