$\S{12.1}-Sequences$

Mark Woodard

Furman U

Fall 2010

Mark Woodard (Furman U)

<ロ> (日) (日) (日) (日) (日)

Outline

Definition and examples

- 2 Recursively defined sequences
- Graphing sequences
- 4 The limits of a sequence
- 5 Basic limit theorems
- 6 Bounded sequences and monotone sequences

∃ ▶ ∢

A sequence is a list of real numbers in a definite order: $a_1, a_2, a_3 \dots$ The sequence a_1, a_2, a_3, \dots will be denoted by $\{a_n\}$.

(日) (同) (三) (三)

A sequence is a list of real numbers in a definite order: $a_1, a_2, a_3 \dots$ The sequence a_1, a_2, a_3, \dots will be denoted by $\{a_n\}$.

Problem

(日) (周) (三) (三)

A sequence is a list of real numbers in a definite order: $a_1, a_2, a_3 \dots$ The sequence a_1, a_2, a_3, \dots will be denoted by $\{a_n\}$.

Problem

• Let $a_n = 1/n$, $n \ge 1$. List the the first four terms of $\{a_n\}$.

A sequence is a list of real numbers in a definite order: $a_1, a_2, a_3 \dots$ The sequence a_1, a_2, a_3, \dots will be denoted by $\{a_n\}$.

Problem

- Let $a_n = 1/n$, $n \ge 1$. List the the first four terms of $\{a_n\}$.
- Let $a_n = 2/(n^2 + n + 1)$, $n \ge 1$. List the first four terms of $\{a_n\}$.

(本部) (本語) (本語) (二語)

A sequence is a list of real numbers in a definite order: $a_1, a_2, a_3 \dots$ The sequence a_1, a_2, a_3, \dots will be denoted by $\{a_n\}$.

Problem

- Let $a_n = 1/n$, $n \ge 1$. List the the first four terms of $\{a_n\}$.
- Let $a_n = 2/(n^2 + n + 1)$, $n \ge 1$. List the first four terms of $\{a_n\}$.

Solution

イロト 不得下 イヨト イヨト 二日

A sequence is a list of real numbers in a definite order: $a_1, a_2, a_3 \dots$ The sequence a_1, a_2, a_3, \dots will be denoted by $\{a_n\}$.

Problem

- Let $a_n = 1/n$, $n \ge 1$. List the the first four terms of $\{a_n\}$.
- Let $a_n = 2/(n^2 + n + 1)$, $n \ge 1$. List the first four terms of $\{a_n\}$.

Solution

• 1,1/2,1/3,1/4.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

A sequence is a list of real numbers in a definite order: $a_1, a_2, a_3 \dots$ The sequence a_1, a_2, a_3, \dots will be denoted by $\{a_n\}$.

Problem

- Let $a_n = 1/n$, $n \ge 1$. List the the first four terms of $\{a_n\}$.
- Let $a_n = 2/(n^2 + n + 1)$, $n \ge 1$. List the first four terms of $\{a_n\}$.

Solution

- 1,1/2,1/3,1/4.
- 2/3, 2/7, 2/13, 2/21.

イロト 不得 トイヨト イヨト 二日

A triangle of dots is created by placing one less dot in each successive row. The number of dots in the resulting triangle is called a *triangular number*. The first four triangular numbers are 1, 3, 6, and 10. The corresponding triangles can be drawn to look like bowling pins.

A B A A B A

A triangle of dots is created by placing one less dot in each successive row. The number of dots in the resulting triangle is called a *triangular number*. The first four triangular numbers are 1, 3, 6, and 10. The corresponding triangles can be drawn to look like bowling pins.

Problem

Let T_n denote the nth triangular number. Find a formula for T_n .

A B F A B F

▲□▶ ▲圖▶ ▲温▶ ▲温≯

• Observe that

 $T_n = 1 + 2 + 3 + \dots + n$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Observe that

$$T_n = 1 + 2 + 3 + \dots + n$$

• By a famous formula for the sum of an arithmetic sequence,

$$T_n=\frac{n(n+1)}{2},$$

which gives us the desired formula.

(3)

Mark Woodard (Furman U)

 Image: Fall 2010
 6 / 16

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

I

 Some sequences are easy to describe in terms of some of their previous terms. For example the *n*th triangular number is simply the (n-1)st triangular number plus n, that is,

$$T_n=T_{n-1}+n.$$

3 → 4 3

 Some sequences are easy to describe in terms of some of their previous terms. For example the *n*th triangular number is simply the (n-1)st triangular number plus n, that is,

$$T_n=T_{n-1}+n.$$

• This is an example of a recursively defined sequence.

• Some sequences are easy to describe in terms of some of their previous terms. For example the *n*th triangular number is simply the (n-1)st triangular number plus *n*, that is,

$$T_n=T_{n-1}+n.$$

- This is an example of a *recursively defined sequence*.
- A recursively defined sequence does not give us an explicit formula for T_n in terms of n; nonetheless, we can compute quickly with the recursive formula.

< 3 > < 3 >

Let $f_1 = 1$, $f_2 = 1$, and $f_n = f_{n-1} + f_{n-2}$ for $n \ge 2$. The elements of the sequence $\{f_n\}$ are called the Fibonacci numbers. Compute f_6 .

(日) (周) (三) (三)

Let $f_1 = 1$, $f_2 = 1$, and $f_n = f_{n-1} + f_{n-2}$ for $n \ge 2$. The elements of the sequence $\{f_n\}$ are called the Fibonacci numbers. Compute f_6 .

Solution

We proceed inductively:

$$f_{3} = 1 + 1 = 2$$

$$f_{4} = 1 + 2 = 3$$

$$f_{5} = 2 + 3 = 5$$

$$f_{6} = 3 + 5 = 8$$

$$f_{7} = 5 + 8 = 13.$$

イロト 不得下 イヨト イヨト 二日

Graph the sequence $\{a_n\}$ with $a_n = \frac{n}{n+1}$ by two different methods:

<ロ> (日) (日) (日) (日) (日)

Graph the sequence $\{a_n\}$ with $a_n = \frac{n}{n+1}$ by two different methods:

1 By plotting a_n on the real line.

(日) (周) (三) (三)

Graph the sequence $\{a_n\}$ with $a_n = \frac{n}{n+1}$ by two different methods:

1 By plotting a_n on the real line.

2 By plotting (n, a_n) in the plane.

Graph the sequence $\{a_n\}$ with $a_n = \frac{n}{n+1}$ by two different methods:

1 By plotting a_n on the real line.

2 By plotting (n, a_n) in the plane.

Problem

What is the tendency of the sequence $\{a_n\}$ as $n \to \infty$.

A B M A B M

A sequence $\{a_n\}$ has limit L and we write

$$\lim_{n\to\infty}a_n=L \qquad \text{or} \qquad a_n\to L \quad \text{as} \quad n\to\infty.$$

if for every $\varepsilon > 0$ there exists a corresponding integer N such that

$$n \ge N$$
 implies $|a_n - L| < \varepsilon$.

イロト イポト イヨト イヨト

A sequence $\{a_n\}$ has limit L and we write

$$\lim_{n\to\infty}a_n=L \qquad \text{or} \qquad a_n\to L \quad \text{as} \quad n\to\infty.$$

if for every $\varepsilon > 0$ there exists a corresponding integer N such that

$$n \ge N$$
 implies $|a_n - L| < \varepsilon$.

Theorem

If $\lim_{x\to\infty} f(x) = L$ and if $a_n = f(n)$ for integers $n \ge 1$, then $a_n \to L$ as $n \to \infty$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Let $a_n = \frac{n^2 + 1}{n^3 + 4n + 9}$. Determine the limit of the sequence $\{a_n\}$, if it exists.

(日) (同) (三) (三)

Let $a_n = \frac{n^2 + 1}{n^3 + 4n + 9}$. Determine the limit of the sequence $\{a_n\}$, if it exists.

Solution

<ロ> (日) (日) (日) (日) (日)

Let
$$a_n = \frac{n^2 + 1}{n^3 + 4n + 9}$$
. Determine the limit of the sequence $\{a_n\}$, if it exists.

Solution

Let f(x) = (x² + 1)/(x³ + 4x + 9). By dividing numerator and denominator by x³, we obtain

$$f(x) = \frac{\frac{1}{x} + \frac{1}{x^3}}{1 + \frac{4}{x^2} + \frac{9}{x^3}}$$

<ロ> (日) (日) (日) (日) (日)

Let
$$a_n = \frac{n^2 + 1}{n^3 + 4n + 9}$$
. Determine the limit of the sequence $\{a_n\}$, if it exists.

Solution

• Let $f(x) = (x^2 + 1)/(x^3 + 4x + 9)$. By dividing numerator and denominator by x^3 , we obtain

$$f(x) = \frac{\frac{1}{x} + \frac{1}{x^3}}{1 + \frac{4}{x^2} + \frac{9}{x^3}}.$$

• As $x \to \infty$, we see that $f(x) \to 0$. Thus $a_n \to 0$ as $n \to \infty$.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

If $a_n \rightarrow a$ and $b_n \rightarrow b$ as $n \rightarrow \infty$, and if c is a constant, then

If $a_n \to a$ and $b_n \to b$ as $n \to \infty$, and if c is a constant, then

• $(a_n + b_n) \rightarrow a + b \text{ as } n \rightarrow \infty;$

(日) (四) (王) (王) (王)

If $a_n \rightarrow a$ and $b_n \rightarrow b$ as $n \rightarrow \infty$, and if c is a constant, then

•
$$(a_n + b_n) \rightarrow a + b$$
 as $n \rightarrow \infty$;

•
$$(a_n - b_n) \rightarrow a - b$$
 as $n \rightarrow \infty$;

If $a_n \rightarrow a$ and $b_n \rightarrow b$ as $n \rightarrow \infty$, and if c is a constant, then

•
$$(a_n + b_n) \rightarrow a + b$$
 as $n \rightarrow \infty$;

•
$$(a_n - b_n) \rightarrow a - b$$
 as $n \rightarrow \infty$;

•
$$ca_n \rightarrow ca \ as \ n \rightarrow \infty;$$

(日) (四) (三) (三) (三)

If $a_n \rightarrow a$ and $b_n \rightarrow b$ as $n \rightarrow \infty$, and if c is a constant, then

•
$$(a_n + b_n) \rightarrow a + b$$
 as $n \rightarrow \infty$;

•
$$(a_n - b_n) \rightarrow a - b$$
 as $n \rightarrow \infty$;

• $ca_n \rightarrow ca \ as \ n \rightarrow \infty;$

•
$$a_n b_n \rightarrow ab as n \rightarrow \infty$$
;

If $a_n \rightarrow a$ and $b_n \rightarrow b$ as $n \rightarrow \infty$, and if c is a constant, then

•
$$(a_n + b_n) \rightarrow a + b$$
 as $n \rightarrow \infty$;

•
$$(a_n - b_n) \rightarrow a - b$$
 as $n \rightarrow \infty$;

•
$$ca_n \rightarrow ca \ as \ n \rightarrow \infty;$$

•
$$a_n b_n \rightarrow ab$$
 as $n \rightarrow \infty$;

•
$$a_n/b_n \rightarrow a/b$$
 as $n \rightarrow \infty$, provided $b \neq 0$;

If $a_n \to a$ and $b_n \to b$ as $n \to \infty$, and if c is a constant, then

•
$$(a_n + b_n) \rightarrow a + b$$
 as $n \rightarrow \infty$;

•
$$(a_n - b_n) \rightarrow a - b$$
 as $n \rightarrow \infty$;

•
$$ca_n \rightarrow ca \ as \ n \rightarrow \infty;$$

•
$$a_n b_n \rightarrow ab$$
 as $n \rightarrow \infty$;

•
$$a_n/b_n \rightarrow a/b$$
 as $n \rightarrow \infty$, provided $b \neq 0$;

•
$$(a_n)^p \to a^p$$
 as $n \to \infty$, provided $a \ge 0$ and $p > 0$.

If
$$a_n \rightarrow a$$
 and $b_n \rightarrow b$ as $n \rightarrow \infty$, and if c is a constant, then

•
$$(a_n + b_n) \rightarrow a + b$$
 as $n \rightarrow \infty$;

•
$$(a_n - b_n) \rightarrow a - b$$
 as $n \rightarrow \infty$;

•
$$ca_n \rightarrow ca \ as \ n \rightarrow \infty;$$

•
$$a_nb_n
ightarrow$$
 ab as $n
ightarrow \infty$;

•
$$a_n/b_n \rightarrow a/b$$
 as $n \rightarrow \infty$, provided $b \neq 0$;

•
$$(a_n)^p \to a^p$$
 as $n \to \infty$, provided $a \ge 0$ and $p > 0$.

Theorem (Squeeze Theorem)

If there exists an integer m such that $a_n \leq b_n \leq c_n$ for $n \geq m$ and if $a_n \rightarrow L$ and $c_n \rightarrow L$ as $n \rightarrow \infty$, then $b_n \rightarrow L$ as $n \rightarrow \infty$.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

If $|a_n| \to 0$ as $n \to \infty$, then $a_n \to 0$ as $n \to \infty$.

Mark Woodard (Furman U)

If $|a_n| \to 0$ as $n \to \infty$, then $a_n \to 0$ as $n \to \infty$.

Theorem

If $|a_n| \to 0$ as $n \to \infty$, then $a_n \to 0$ as $n \to \infty$.

Theorem

• If $-1 < r \le 1$, then $\{r^n\}$ converges; if $r \le -1$ or r > 1, then $\{r^n\}$ diverges.

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

If
$$|a_n| \to 0$$
 as $n \to \infty$, then $a_n \to 0$ as $n \to \infty$.

Theorem

- If $-1 < r \le 1$, then $\{r^n\}$ converges; if $r \le -1$ or r > 1, then $\{r^n\}$ diverges.
- If -1 < r < 1, then $r^n \to 0$ as $n \to \infty$; if r = 1, then $r^n \to 1$ as $n \to \infty$.

If
$$|a_n| \to 0$$
 as $n \to \infty$, then $a_n \to 0$ as $n \to \infty$.

Theorem

- If $-1 < r \le 1$, then $\{r^n\}$ converges; if $r \le -1$ or r > 1, then $\{r^n\}$ diverges.
- If -1 < r < 1, then $r^n \to 0$ as $n \to \infty$; if r = 1, then $r^n \to 1$ as $n \to \infty$.

Proof.

If
$$|a_n| \to 0$$
 as $n \to \infty$, then $a_n \to 0$ as $n \to \infty$.

Theorem

- If $-1 < r \le 1$, then $\{r^n\}$ converges; if $r \le -1$ or r > 1, then $\{r^n\}$ diverges.
- If -1 < r < 1, then $r^n \to 0$ as $n \to \infty$; if r = 1, then $r^n \to 1$ as $n \to \infty$.

Proof.

• For r > 0, write $r^n = e^{n \ln(r)}$. If 0 < r < 1, then $\ln(r) < 0$ and $r^n \rightarrow 0$. If r = 1, then $r^n = 1$ and $r^n \rightarrow 1$. If r > 1, then $\ln(r) > 0$ and $r^n \rightarrow \infty$.

If
$$|a_n| \to 0$$
 as $n \to \infty$, then $a_n \to 0$ as $n \to \infty$.

Theorem

- If $-1 < r \le 1$, then $\{r^n\}$ converges; if $r \le -1$ or r > 1, then $\{r^n\}$ diverges.
- If -1 < r < 1, then $r^n \to 0$ as $n \to \infty$; if r = 1, then $r^n \to 1$ as $n \to \infty$.

Proof.

• For r > 0, write $r^n = e^{n \ln(r)}$. If 0 < r < 1, then $\ln(r) < 0$ and $r^n \to 0$. If r = 1, then $r^n = 1$ and $r^n \to 1$. If r > 1, then $\ln(r) > 0$ and $r^n \to \infty$.

• If
$$-1 < r < 0$$
, then $|r^n| = |r|^n$. Since $|r|^n \rightarrow 0$, $r^n \rightarrow 0$.

If
$$|a_n| \to 0$$
 as $n \to \infty$, then $a_n \to 0$ as $n \to \infty$.

Theorem

- If $-1 < r \le 1$, then $\{r^n\}$ converges; if $r \le -1$ or r > 1, then $\{r^n\}$ diverges.
- If -1 < r < 1, then $r^n \to 0$ as $n \to \infty$; if r = 1, then $r^n \to 1$ as $n \to \infty$.

Proof.

- For r > 0, write $r^n = e^{n \ln(r)}$. If 0 < r < 1, then $\ln(r) < 0$ and $r^n \rightarrow 0$. If r = 1, then $r^n = 1$ and $r^n \rightarrow 1$. If r > 1, then $\ln(r) > 0$ and $r^n \rightarrow \infty$.
- If -1 < r < 0, then $|r^n| = |r|^n$. Since $|r|^n \to 0$, $r^n \to 0$.
- If r ≤ −1, then {rⁿ} oscillates and does not approach a fixed limit.

・ロン ・四 ・ ・ ヨン ・ ヨン

<ロ> (日) (日) (日) (日) (日)

Let
$$a_n = \frac{2^n}{3^n+8} + \frac{n}{n+4} + \frac{\sin(n)}{n}$$
. Evaluate $\lim_{n\to\infty} a_n$.

Solution

• Let
$$b_n = \frac{2^n}{3^n + 8}$$
, $c_n = \frac{n}{n+4}$, and $d_n = \frac{\sin(n)}{n}$.

▲□▶ ▲圖▶ ▲温▶ ▲温≯

Let
$$a_n = \frac{2^n}{3^n+8} + \frac{n}{n+4} + \frac{\sin(n)}{n}$$
. Evaluate $\lim_{n\to\infty} a_n$.

Solution

• Let
$$b_n = \frac{2^n}{3^n + 8}$$
, $c_n = \frac{n}{n+4}$, and $d_n = \frac{\sin(n)}{n}$.

•
$$b_n = (2/3)^n/(1+8/3^n) \to 0 \text{ as } n \to \infty.$$

▲白♪ ▲圖♪ ▲国≯ ▲国≯

Let
$$a_n = \frac{2^n}{3^n+8} + \frac{n}{n+4} + \frac{\sin(n)}{n}$$
. Evaluate $\lim_{n\to\infty} a_n$.

Solution

• Let
$$b_n = \frac{2^n}{3^n + 8}$$
, $c_n = \frac{n}{n+4}$, and $d_n = \frac{\sin(n)}{n}$

•
$$b_n = (2/3)^n/(1+8/3^n) \to 0 \text{ as } n \to \infty.$$

•
$$c_n = 1/(1+4/n) \to 1 \text{ as } n \to \infty.$$

▲白♪ ▲圖♪ ▲国≯ ▲国≯

Let
$$a_n = \frac{2^n}{3^n+8} + \frac{n}{n+4} + \frac{\sin(n)}{n}$$
. Evaluate $\lim_{n\to\infty} a_n$.

Solution

• Let
$$b_n = \frac{2^n}{3^n + 8}$$
, $c_n = \frac{n}{n+4}$, and $d_n = \frac{\sin(n)}{n}$.

•
$$b_n = (2/3)^n/(1+8/3^n) \to 0 \text{ as } n \to \infty.$$

•
$$c_n = 1/(1+4/n) \to 1 \text{ as } n \to \infty.$$

• Since $-1 \leq \sin(n) \leq 1$, it follows that $-1/n \leq \sin(n)/n \leq 1/n$. Since $1/n \rightarrow 0$ and $-1/n \rightarrow 0$ as $n \rightarrow \infty$, $d_n = \sin(n)/n \rightarrow 0$ as $n \rightarrow \infty$ by the Squeeze Theorem.

イロト 不得下 イヨト イヨト 二日

Let
$$a_n = \frac{2^n}{3^n+8} + \frac{n}{n+4} + \frac{\sin(n)}{n}$$
. Evaluate $\lim_{n\to\infty} a_n$.

Solution

• Let
$$b_n = \frac{2^n}{3^n + 8}$$
, $c_n = \frac{n}{n+4}$, and $d_n = \frac{\sin(n)}{n}$.

•
$$b_n = (2/3)^n/(1+8/3^n) \to 0 \text{ as } n \to \infty.$$

•
$$c_n = 1/(1+4/n) \to 1 \text{ as } n \to \infty.$$

• Since $-1 \leq \sin(n) \leq 1$, it follows that $-1/n \leq \sin(n)/n \leq 1/n$. Since $1/n \rightarrow 0$ and $-1/n \rightarrow 0$ as $n \rightarrow \infty$, $d_n = \sin(n)/n \rightarrow 0$ as $n \rightarrow \infty$ by the Squeeze Theorem.

• Finally
$$a_n \rightarrow 0 + 1 + 0 = 1$$
 as $n \rightarrow \infty$.

イロト 不得下 イヨト イヨト 二日

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

A sequence {a_n} is said to be *bounded above* if there exists a number M such that a_n ≤ M for each n ≥ 1.

- A sequence {a_n} is said to be *bounded above* if there exists a number M such that a_n ≤ M for each n ≥ 1.
- A sequence {a_n} is said to be *bounded below* if there exists a number M such that a_n ≥ M for each n ≥ 1.

- A sequence {a_n} is said to be *bounded above* if there exists a number M such that a_n ≤ M for each n ≥ 1.
- A sequence {a_n} is said to be *bounded below* if there exists a number M such that a_n ≥ M for each n ≥ 1.
- A sequence $\{a_n\}$ is said to be *bounded* if it is bounded above and below.

- A sequence {a_n} is said to be *bounded above* if there exists a number M such that a_n ≤ M for each n ≥ 1.
- A sequence {a_n} is said to be *bounded below* if there exists a number M such that a_n ≥ M for each n ≥ 1.
- A sequence $\{a_n\}$ is said to be *bounded* if it is bounded above and below.

Problem

Show that the sequence
$$a_n = \frac{n}{n+1}$$
 is bounded.

▲□▶ ▲圖▶ ▲温▶ ▲温≯

A sequence {a_n} is called *monotone increasing* if a_n ≤ a_{n+1} for all n ≥ 1.

イロト イヨト イヨト イヨト

- A sequence {a_n} is called *monotone increasing* if a_n ≤ a_{n+1} for all n ≥ 1.
- A sequence {a_n} is called *monotone decreasing* if a_n ≥ a_{n+1} for all n ≥ 1.

A B A A B A

- A sequence {a_n} is called *monotone increasing* if a_n ≤ a_{n+1} for all n ≥ 1.
- A sequence {a_n} is called *monotone decreasing* if a_n ≥ a_{n+1} for all n ≥ 1.
- A sequence $\{a_n\}$ is called *monotone* if it is either monotone increasing or decreasing.

()

- A sequence {a_n} is called *monotone increasing* if a_n ≤ a_{n+1} for all n ≥ 1.
- A sequence {a_n} is called *monotone decreasing* if a_n ≥ a_{n+1} for all n ≥ 1.
- A sequence $\{a_n\}$ is called *monotone* if it is either monotone increasing or decreasing.

Problem

Let
$$a_n = \frac{n}{n+1}$$
. Show that the sequence $\{a_n\}$ is monotone.

• • = • • = •

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• If a sequence is monotone increasing and bounded above, then it converges to a limit.

- If a sequence is monotone increasing and bounded above, then it converges to a limit.
- If a sequence is monotone decreasing and bounded below, then it converges to a limit.

()

- If a sequence is monotone increasing and bounded above, then it converges to a limit.
- If a sequence is monotone decreasing and bounded below, then it converges to a limit.

Problem

Let $a_1 = 1$ and let $a_n = 20 + \frac{1}{3}a_{n-1}$ for $n \ge 2$. Show that $\{a_n\}$ is monotone increasing and bounded above. Find the limit of the sequence.

- A I I I A I I I I