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Definition and examples

Definition

A sequence is a list of real numbers in a definite order: a1, a2, a3 . . .. The
sequence a1, a2, a3, . . . will be denoted by {an}.

Problem

Let an = 1/n, n ≥ 1. List the the first four terms of {an}.
Let an = 2/(n2 + n + 1), n ≥ 1. List the first four terms of {an}.

Solution

1, 1/2, 1/3, 1/4.

2/3, 2/7, 2/13, 2/21.
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Definition and examples

Definition

A triangle of dots is created by placing one less dot in each successive row.
The number of dots in the resulting triangle is called a triangular number.
The first four triangular numbers are 1, 3, 6, and 10. The corresponding
triangles can be drawn to look like bowling pins.

Problem

Let Tn denote the nth triangular number. Find a formula for Tn.
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Definition and examples

Solution

Observe that
Tn = 1 + 2 + 3 + · · ·+ n

By a famous formula for the sum of an arithmetic sequence,

Tn =
n(n + 1)

2
,

which gives us the desired formula.

Mark Woodard (Furman U) §12.1–Sequences Fall 2010 5 / 16



Definition and examples

Solution

Observe that
Tn = 1 + 2 + 3 + · · ·+ n

By a famous formula for the sum of an arithmetic sequence,

Tn =
n(n + 1)

2
,

which gives us the desired formula.

Mark Woodard (Furman U) §12.1–Sequences Fall 2010 5 / 16



Definition and examples

Solution

Observe that
Tn = 1 + 2 + 3 + · · ·+ n

By a famous formula for the sum of an arithmetic sequence,

Tn =
n(n + 1)

2
,

which gives us the desired formula.

Mark Woodard (Furman U) §12.1–Sequences Fall 2010 5 / 16



Recursively defined sequences

Example

Some sequences are easy to describe in terms of some of their
previous terms. For example the nth triangular number is simply the
(n − 1)st triangular number plus n, that is,

Tn = Tn−1 + n.

This is an example of a recursively defined sequence.

A recursively defined sequence does not give us an explicit formula for
Tn in terms of n; nonetheless, we can compute quickly with the
recursive formula.
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Recursively defined sequences

Problem

Let f1 = 1, f2 = 1, and fn = fn−1 + fn−2 for n ≥ 2. The elements of the
sequence {fn} are called the Fibonacci numbers. Compute f6.

Solution

We proceed inductively:

f3 = 1 + 1 = 2

f4 = 1 + 2 = 3

f5 = 2 + 3 = 5

f6 = 3 + 5 = 8

f7 = 5 + 8 = 13.
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Graphing sequences

Problem

Graph the sequence {an} with an =
n

n + 1
by two different methods:

1 By plotting an on the real line.

2 By plotting (n, an) in the plane.

Problem

What is the tendency of the sequence {an} as n→∞.
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The limits of a sequence

Definition

A sequence {an} has limit L and we write

lim
n→∞

an = L or an → L as n→∞.

if for every ε > 0 there exists a corresponding integer N such that

n ≥ N implies |an − L| < ε.

Theorem

If limx→∞ f (x) = L and if an = f (n) for integers n ≥ 1, then an → L as
n→∞.

Mark Woodard (Furman U) §12.1–Sequences Fall 2010 9 / 16



The limits of a sequence

Definition

A sequence {an} has limit L and we write

lim
n→∞

an = L or an → L as n→∞.

if for every ε > 0 there exists a corresponding integer N such that

n ≥ N implies |an − L| < ε.

Theorem

If limx→∞ f (x) = L and if an = f (n) for integers n ≥ 1, then an → L as
n→∞.

Mark Woodard (Furman U) §12.1–Sequences Fall 2010 9 / 16



The limits of a sequence

Problem

Let an =
n2 + 1

n3 + 4n + 9
. Determine the limit of the sequence {an}, if it

exists.

Solution

Let f (x) = (x2 + 1)/(x3 + 4x + 9). By dividing numerator and
denominator by x3, we obtain

f (x) =
1
x + 1

x3

1 + 4
x2 + 9

x3

.

As x →∞, we see that f (x)→ 0. Thus an → 0 as n→∞.
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Basic limit theorems

Theorem

If an → a and bn → b as n→∞, and if c is a constant, then

(an + bn)→ a + b as n→∞;

(an − bn)→ a− b as n→∞;

can → ca as n→∞;

anbn → ab as n→∞;

an/bn → a/b as n→∞, provided b 6= 0;

(an)p → ap as n→∞, provided a ≥ 0 and p > 0.

Theorem (Squeeze Theorem)

If there exists an integer m such that an ≤ bn ≤ cn for n ≥ m and if
an → L and cn → L as n→∞, then bn → L as n→∞.
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Basic limit theorems

Theorem

If |an| → 0 as n→∞, then an → 0 as n→∞.

Theorem

If −1 < r ≤ 1, then {rn} converges; if r ≤ −1 or r > 1, then {rn}
diverges.

If −1 < r < 1, then rn → 0 as n→∞; if r = 1, then rn → 1 as
n→∞.

Proof.

For r > 0, write rn = en ln(r). If 0 < r < 1, then ln(r) < 0 and
rn → 0. If r = 1, then rn = 1 and rn → 1. If r > 1, then ln(r) > 0
and rn →∞.

If −1 < r < 0, then |rn| = |r |n. Since |r |n → 0, rn → 0.

If r ≤ −1, then {rn} oscillates and does not approach a fixed
limit.
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Basic limit theorems

Problem

Let an =
2n

3n + 8
+

n

n + 4
+

sin(n)

n
. Evaluate limn→∞ an.

Solution

Let bn =
2n

3n + 8
, cn =

n

n + 4
, and dn =

sin(n)

n
.

bn = (2/3)n/(1 + 8/3n)→ 0 as n→∞.

cn = 1/(1 + 4/n)→ 1 as n→∞.

Since −1 ≤ sin(n) ≤ 1, it follows that −1/n ≤ sin(n)/n ≤ 1/n. Since
1/n→ 0 and −1/n→ 0 as n→∞, dn = sin(n)/n→ 0 as n→∞ by
the Squeeze Theorem.
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Bounded sequences and monotone sequences

Definition

A sequence {an} is said to be bounded above if there exists a number
M such that an ≤ M for each n ≥ 1.

A sequence {an} is said to be bounded below if there exists a number
M such that an ≥ M for each n ≥ 1.

A sequence {an} is said to be bounded if it is bounded above and
below.

Problem

Show that the sequence an =
n

n + 1
is bounded.

Mark Woodard (Furman U) §12.1–Sequences Fall 2010 14 / 16



Bounded sequences and monotone sequences

Definition

A sequence {an} is said to be bounded above if there exists a number
M such that an ≤ M for each n ≥ 1.

A sequence {an} is said to be bounded below if there exists a number
M such that an ≥ M for each n ≥ 1.

A sequence {an} is said to be bounded if it is bounded above and
below.

Problem

Show that the sequence an =
n

n + 1
is bounded.

Mark Woodard (Furman U) §12.1–Sequences Fall 2010 14 / 16



Bounded sequences and monotone sequences

Definition

A sequence {an} is said to be bounded above if there exists a number
M such that an ≤ M for each n ≥ 1.

A sequence {an} is said to be bounded below if there exists a number
M such that an ≥ M for each n ≥ 1.

A sequence {an} is said to be bounded if it is bounded above and
below.

Problem

Show that the sequence an =
n

n + 1
is bounded.

Mark Woodard (Furman U) §12.1–Sequences Fall 2010 14 / 16



Bounded sequences and monotone sequences

Definition

A sequence {an} is said to be bounded above if there exists a number
M such that an ≤ M for each n ≥ 1.

A sequence {an} is said to be bounded below if there exists a number
M such that an ≥ M for each n ≥ 1.

A sequence {an} is said to be bounded if it is bounded above and
below.

Problem

Show that the sequence an =
n

n + 1
is bounded.

Mark Woodard (Furman U) §12.1–Sequences Fall 2010 14 / 16



Bounded sequences and monotone sequences

Definition

A sequence {an} is said to be bounded above if there exists a number
M such that an ≤ M for each n ≥ 1.

A sequence {an} is said to be bounded below if there exists a number
M such that an ≥ M for each n ≥ 1.

A sequence {an} is said to be bounded if it is bounded above and
below.

Problem

Show that the sequence an =
n

n + 1
is bounded.

Mark Woodard (Furman U) §12.1–Sequences Fall 2010 14 / 16



Bounded sequences and monotone sequences

Definition

A sequence {an} is called monotone increasing if an ≤ an+1 for all
n ≥ 1.

A sequence {an} is called monotone decreasing if an ≥ an+1 for all
n ≥ 1.

A sequence {an} is called monotone if it is either monotone increasing
or decreasing.

Problem

Let an =
n

n + 1
. Show that the sequence {an} is monotone.
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Bounded sequences and monotone sequences

Theorem

If a sequence is monotone increasing and bounded above, then it
converges to a limit.

If a sequence is monotone decreasing and bounded below, then it
converges to a limit.

Problem

Let a1 = 1 and let an = 20 +
1

3
an−1 for n ≥ 2. Show that {an} is

monotone increasing and bounded above. Find the limit of the sequence.
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