§8.4–Partial Fractions

Mark Woodard

Furman U

Fall 2010
Outline

1. The method illustrated
2. Terminology
3. Factoring Polynomials
4. Partial fraction decompositions
5. Further examples
The method illustrated

Example

Notice that \(f(x) = x^2 + 7x + 6 = x^2 - 1\). The terms on the right form the partial fraction decomposition of the rational function \(f \).

Thus \(\int \frac{x+1}{x^2+7x+6} \, dx = \int \frac{1}{x^2+7} \, dx - \int \frac{1}{2x+3} \, dx = \ln |x^2+7| - \frac{1}{2} \ln |2x+3| + C \).

Does this suggest a general method for solving integrals of the form \(\int \frac{P(x)}{Q(x)} \, dx \), where \(P \) and \(Q \) are polynomials? If yes, how do we decompose \(\frac{P(x)}{Q(x)} \) into partial fractions?

Mark Woodard (Furman U)
Example

- Notice that

\[f(x) = \frac{x + 1}{2x^2 + 7x + 6} = \frac{1}{x + 2} - \frac{1}{2x + 3}. \]

The terms on the right form the *partial fraction decomposition* of the rational function \(f \).
Example

- Notice that

\[f(x) = \frac{x + 1}{2x^2 + 7x + 6} = \frac{1}{x + 2} - \frac{1}{2x + 3}. \]

The terms on the right form the *partial fraction decomposition* of the rational function \(f \).

- Thus

\[
\int \frac{x + 1}{2x^2 + 7x + 6} \, dx = \int \frac{1}{x + 2} \, dx - \int \frac{1}{2x + 3} \, dx \\
= \ln |x + 2| - \frac{1}{2} \ln |2x + 3| + C
\]
Example

- Notice that

\[f(x) = \frac{x + 1}{2x^2 + 7x + 6} = \frac{1}{x + 2} - \frac{1}{2x + 3}. \]

The terms on the right form the *partial fraction decomposition* of the rational function \(f \).

- Thus

\[
\int \frac{x + 1}{2x^2 + 7x + 6} \, dx = \int \frac{1}{x + 2} \, dx - \int \frac{1}{2x + 3} \, dx
\]

\[= \ln |x + 2| - \frac{1}{2} \ln |2x + 3| + C \]

- Does this suggest a general method for solving integrals of the form \(\int P(x)/Q(x) \, dx \), where \(P \) and \(Q \) are polynomials?
The method illustrated

Example

- Notice that

\[
 f(x) = \frac{x + 1}{2x^2 + 7x + 6} = \frac{1}{x + 2} - \frac{1}{2x + 3}.
\]

The terms on the right form the partial fraction decomposition of the rational function \(f \).

- Thus

\[
 \int \frac{x + 1}{2x^2 + 7x + 6} \, dx = \int \frac{1}{x + 2} \, dx - \int \frac{1}{2x + 3} \, dx
\]

\[
 = \ln |x + 2| - \frac{1}{2} \ln |2x + 3| + C
\]

- Does this suggest a general method for solving integrals of the form \(\int \frac{P(x)}{Q(x)} \, dx \), where \(P \) and \(Q \) are polynomials?

- If yes, how do we decompose \(P(x)/Q(x) \) into partial fractions?
Definition

A *rational function* is any function of the form $f(x) = P(x)/Q(x)$, where P and Q are polynomials. The rational function f is said to be *proper* if \(\deg P < \deg Q \).
Definition

A rational function is any function of the form $f(x) = P(x)/Q(x)$, where P and Q are polynomials. The rational function f is said to be proper if $\deg P < \deg Q$.

Example

Here are two examples:
Definition

A *rational function* is any function of the form \(f(x) = \frac{P(x)}{Q(x)} \), where \(P \) and \(Q \) are polynomials. The rational function \(f \) is said to be *proper* if \(\deg P < \deg Q \).

Example

Here are two examples:

- \(f(x) = \frac{x + 1}{2x^2 + 7x + 6} \) is proper.
Definition

A *rational function* is any function of the form \(f(x) = P(x)/Q(x) \), where \(P \) and \(Q \) are polynomials. The rational function \(f \) is said to be *proper* if \(\deg P < \deg Q \).

Example

Here are two examples:

- \(f(x) = \frac{x + 1}{2x^2 + 7x + 6} \) is proper.
- \(g(x) = \frac{x^3 + 2x + 4}{x^2 - 1} \) is not proper.
Long division

An improper rational function can be written as a sum of a polynomial and a proper rational function by long division. Thus, in the example above,

\[
g(x) = \frac{x^3 + 2x + 4}{x^2 - 1} = x + \frac{3x + 4}{x^2 - 1}.
\]
Example

Note that \(P(x) = x^3 + 2x^2 - 4x - 8 = x^2(x + 2) - 4(x + 2) = (x - 2)(x + 2)^2. \)

The factors of \(P \) are \((x - 2)\) and \((x + 2)\), and both factors are linear.

We say that \((x + 2)\) has multiplicity 2.

Note that \(Q(x) = x^4 - 1 = (x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x^2 + 1). \)

The factor \((x^2 + 1)\) cannot be further factored (over the real numbers). Such a factor is called an irreducible quadratic.

The quadratic \(ax^2 + bx + c \) is irreducible when it has no real roots; thus, whenever \(b^2 - 4ac < 0 \).
Example

- Note that

\[P(x) = x^3 + 2x^2 - 4x - 8 = x^2(x + 2) - 4(x + 2) = (x - 2)(x + 2)^2. \]

The factors of \(P \) are \((x - 2) \) and \((x + 2) \), and both factors are linear. We say that \((x + 2) \) has multiplicity 2.
Example

Note that

\[P(x) = x^3 + 2x^2 - 4x - 8 = x^2(x + 2) - 4(x + 2) = (x - 2)(x + 2)^2. \]

The factors of \(P \) are \((x - 2)\) and \((x + 2)\), and both factors are linear. We say that \((x + 2)\) has multiplicity 2.

Note that

\[Q(x) = x^4 - 1 = (x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x^2 + 1). \]

The factor \((x^2 + 1)\) cannot be further factored (over the real numbers). Such a factor is called an irreducible quadratic. The quadratic

\[ax^2 + bx + c \]

is irreducible when it has no real roots; thus, whenever \(b^2 - 4ac < 0 \).
Theorem (The Fundamental Theorem of Algebra)

Every polynomial can be expressed as a product of powers of linear factors \((ax + b)^m\) and powers of irreducible quadratic factors \((ax^2 + bx + c)^n\).
Theorem (Partial Fraction Decompositions)

Assume that the rational function \(\frac{P(x)}{Q(x)} \) is proper.
Theorem (Partial Fraction Decompositions)

Assume that the rational function \(\frac{P(x)}{Q(x)} \) is proper.

- Each factor of \(Q \) will generate terms of the partial fraction decomposition of \(P/Q \).
Theorem (Partial Fraction Decompositions)

Assume that the rational function \(\frac{P(x)}{Q(x)} \) is proper.

- Each factor of \(Q \) will generate terms of the partial fraction decomposition of \(P/Q \).
- To each linear factor \((ax + b)^m\) of \(Q \), the decomposition of \(P/Q \) will contain the terms

\[
\frac{D_1}{(ax + b)^1} + \cdots + \frac{D_m}{(ax + b)^m}.
\]
Theorem (Partial Fraction Decompositions)

Assume that the rational function \(\frac{P(x)}{Q(x)} \) is proper.

- Each factor of \(Q \) will generate terms of the partial fraction decomposition of \(P/Q \).
- To each linear factor \((ax + b)^m\) of \(Q \), the decomposition of \(P/Q \) will contain the terms
 \[
 \frac{D_1}{(ax + b)^1} + \cdots + \frac{D_m}{(ax + b)^m}.
 \]
- To each irreducible quadratic factor \((ax^2 + bx + c)^n\) of \(Q \), the decomposition will contain the terms
 \[
 \frac{E_1x + F_1}{(ax^2 + bx + c)^1} + \cdots + \frac{E_nx + F_n}{(ax^2 + bx + c)^n}.
 \]
Further examples

Problem

Find the partial fraction decomposition of \(f(x) = \frac{x + 1}{2x^2 + 7x + 6} \).
Problem

Find the partial fraction decomposition of \(f(x) = (x + 1)/(2x^2 + 7x + 6) \).

Solution

The answer is

\[
f(x) = \frac{1}{x + 2} - \frac{1}{2x + 3}.
\]
Problem

Find the partial fraction decomposition of
\[f(x) = \frac{3x^2 + 3x - 2}{x^3 + 2x^2 - 4x - 8}. \]
Problem

Find the partial fraction decomposition of
\[f(x) = \frac{3x^2 + 3x - 2}{x^3 + 2x^2 - 4x - 8}. \]

Solution

The answer is
\[f(x) = \frac{2}{(x + 2)} + \frac{-1}{(x + 2)^2} + \frac{1}{(x - 2)}. \]
Problem

Evaluate \(\int \frac{x^6 + 2x^4 + x^3 - 2x^2 - x - 5}{x^4 - 1} \, dx \).
Problem
Evaluate \(\int \frac{x^6 + 2x^4 + x^3 - 2x^2 - x - 5}{x^4 - 1} \, dx \).

Solution
After long division, we have
\[
x^2 + 2 + \frac{x^3 - x^2 - x - 3}{(x^2 + 1)(x - 1)(x + 1)}
\]
Further examples

Problem

Evaluate \(\int \frac{x^6 + 2x^4 + x^3 - 2x^2 - x - 5}{x^4 - 1} \, dx \).

Solution

After long division, we have

\[x^2 + 2 + \frac{x^3 - x^2 - x - 3}{(x^2 + 1)(x - 1)(x + 1)} \]
Problem

Evaluate \(\int \frac{x^6 + 2x^4 + x^3 - 2x^2 - x - 5}{x^4 - 1} \, dx \).

Solution

After long division, we have

\[
x^2 + 2 + \frac{x^3 - x^2 - x - 3}{(x^2 + 1)(x - 1)(x + 1)}
\]

which we write in the form

\[
x^2 + 2 + \frac{A}{x + 1} + \frac{B}{x - 1} + \frac{Cx + D}{x^2 + 1}.
\]
Problem
Evaluate \(\int \frac{x^6 + 2x^4 + x^3 - 2x^2 - x - 5}{x^4 - 1} \, dx \).

Solution
After long division, we have

\[
x^2 + 2 + \frac{x^3 - x^2 - x - 3}{(x^2 + 1)(x - 1)(x + 1)}
\]

which we write in the form

\[
x^2 + 2 + \frac{A}{x + 1} + \frac{B}{x - 1} + \frac{Cx + D}{x^2 + 1}
\]

The integrand becomes

\[
(x^2 + 2) + \frac{1}{x + 1} + \frac{-1}{x - 1} + \frac{x + 1}{x^2 + 1}.
\]
Further examples

Solution

This can now be integrated, yielding

\[\frac{x^3}{3} + 2x + \ln|x+1| - \ln|x-1| + \frac{1}{2} \ln|x^2 + 1| + \tan^{-1}(x) + C. \]