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The forms “0/0” and “∞/∞”

Definition

We say that the limit

lim
x→a

f (x)

g(x)

is of the form “0/0” or “∞/∞” if

lim
x→a

f (x) = lim
x→a

g(x) = 0 or lim
x→a

f (x) = lim
x→a

g(x) = ±∞,

respectively. These are called indeterminate. In this context, a can be any
of a+, a−,±∞.
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The forms “0/0” and “∞/∞”

Theorem (L’Hôpital’s Rule)

If limx→a f (x)/g(x) is an ideterminate form of type “0/0” or “∞/∞” and
if

lim
x→a

f ′(x)

g ′(x)
= L,

then

lim
x→a

f (x)

g(x)
= L.

Remark

When facing an indeterminate form, students will often write:

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g ′(x)

which is, strictly speaking, wrong. L’Hôpital’s rule states that these are
equal only when the limit on the right exists.
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Examples

Problem

Evaluate the following limits:

limx→0
sin(x)

x

limx→1
x2 − 1

x − 1

limx→∞
x4

ex
.
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Indeterminate products: “0 · ∞”

Example

Evaluate the limit: limx→0+ x ln(x).

You can see the difficulty. The first function, x , is trying to take the
product to 0; the second function, ln(x), is trying to take the product
to −∞.

This is an indeterminate product of the type 0 · ∞. How can we
resolve this limit?

Strategy for the “0 · ∞” form

Suppose that the limit limx→a f (x)g(x) is of the form 0 · ∞. This form
can be converted into either a “0/0” or an “∞/∞” form by algebra:

f (x)g(x) =
g(x)

1/f (x)
or f (x)g(x) =

f (x)

1/g(x)
.

Now the limit can be attacked by the previous methods.
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Indeterminate products: “0 · ∞”

Problem

Evaluate the following limits:

Find limx→0+ x ln(x).

Find limx→∞ xe−x .

Find limx→∞ x
(
π/2− tan−1(x)

)
.
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Indeterminate differences: “∞−∞”

The basic strategy for indeterminate differences

An indeterminate difference is any limit of the form

lim
x→a

(
f (x)− g(x)

)
in which f and g simultaneously approach +∞ or −∞.

To handle an “∞−∞”’ form, use algebra to convert this form into
one of the other forms.
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Indeterminate differences: “∞−∞”

Problem

Find lim
u→0+

(
1

1− e−u
− 1

u

)
.

Solution

This is called an “∞−∞” form, since both terms are approaching
+∞.

We can force a common denominator:

1

1− e−u
− 1

u
=

u − 1 + e−u

u(1− e−u)
.

As u → 0+, the right-hand-side is now a “0/0” form and can be
treated using l’Hôpital’s rule. The answer is 1/2.
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treated using l’Hôpital’s rule. The answer is 1/2.

Mark Woodard (Furman U) §7.8–Indeterminate forms and L’Hôpital’s rule Fall 2010 9 / 11
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treated using l’Hôpital’s rule. The answer is 1/2.

Mark Woodard (Furman U) §7.8–Indeterminate forms and L’Hôpital’s rule Fall 2010 9 / 11
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Indeterminate powers: “00”, “∞0” and “1∞”

The basic strategy for indeterminate powers

An indeterminate power is any limit of the form

lim
x→a

f (x)g(x)

resulting in “00”, “∞0” and “1∞”.

In each of these cases, first write

f (x)g(x) = exp
(
g(x) ln f (x)

)
.

The exponent, g(x) ln f (x), will be in one the preceding forms and
can be handled by those methods.
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Indeterminate powers: “00”, “∞0” and “1∞”

Problem

Find lim
x→∞

(
1 +

1

x2

)x

.

Find limx→∞ x1/x .

Find limx→0+ x sin(x).
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