$\S7.8\text{--Indeterminate forms and L'Hôpital's rule$

Mark Woodard

Furman U

Fall 2010

Mark Woodard (Furman U) §7.8–Indeterminate forms and L'Hôpital's rule

→ 3 → 4 3

Outline

3 Indeterminate products: " $0 \cdot \infty$ "

4 Indeterminate differences: " $\infty - \infty$ "

5 Indeterminate powers: " 0^0 ", " ∞^0 " and " 1^∞ "

イロト イポト イヨト イヨト 二日

Definition

We say that the limit

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

is of the form "0/0" or " ∞/∞ " if

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \quad \text{or} \quad \lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \pm \infty,$$

respectively. These are called *indeterminate*. In this context, a can be any of $a^+, a^-, \pm\infty$.

()

Theorem (L'Hôpital's Rule)

If $\lim_{x\to a} f(x)/g(x)$ is an ideterminate form of type "0/0" or " ∞/∞ " and if

$$\lim_{x\to a}\frac{f'(x)}{g'(x)}=L,$$

then

$$\lim_{x\to a}\frac{f(x)}{g(x)}=L.$$

A B F A B F

Theorem (L'Hôpital's Rule)

If $\lim_{x\to a} f(x)/g(x)$ is an ideterminate form of type "0/0" or " ∞/∞ " and if

$$\lim_{x\to a}\frac{f'(x)}{g'(x)}=L,$$

then

$$\lim_{x\to a}\frac{f(x)}{g(x)}=L.$$

Remark

When facing an indeterminate form, students will often write:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

which is, strictly speaking, wrong. L'Hôpital's rule states that these are equal **only when the limit on the right exists**.

Fall 2010 4 / 11

Evaluate the following limits:

イロト イヨト イヨト イヨト

Evaluate the following limits: • $\lim_{x\to 0} \frac{\sin(x)}{x}$

<ロ> (日) (日) (日) (日) (日)

Evaluate the following limits: • $\lim_{x\to 0} \frac{\sin(x)}{x}$

•
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

<ロ> (日) (日) (日) (日) (日)

Evaluate the following limits: • $\lim_{x\to 0} \frac{\sin(x)}{x}$ • $\lim_{x\to 1} \frac{x^2 - 1}{x - 1}$ • $\lim_{x\to \infty} \frac{x^4}{e^x}$.

イロト イヨト イヨト

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

• Evaluate the limit: $\lim_{x\to 0^+} x \ln(x)$.

- Evaluate the limit: $\lim_{x\to 0^+} x \ln(x)$.
- You can see the difficulty. The first function, x, is trying to take the product to 0; the second function, $\ln(x)$, is trying to take the product to $-\infty$.

3 🕨 🖌 3

- Evaluate the limit: $\lim_{x\to 0^+} x \ln(x)$.
- You can see the difficulty. The first function, x, is trying to take the product to 0; the second function, $\ln(x)$, is trying to take the product to $-\infty$.
- $\bullet\,$ This is an indeterminate product of the type $0\cdot\infty.$ How can we resolve this limit?

- Evaluate the limit: $\lim_{x\to 0^+} x \ln(x)$.
- You can see the difficulty. The first function, x, is trying to take the product to 0; the second function, $\ln(x)$, is trying to take the product to $-\infty$.
- $\bullet\,$ This is an indeterminate product of the type $0\cdot\infty.$ How can we resolve this limit?

Strategy for the "0 $\cdot \infty$ " form

Suppose that the limit $\lim_{x\to a} f(x)g(x)$ is of the form $0 \cdot \infty$. This form can be converted into either a "0/0" or an " ∞/∞ " form by algebra:

$$f(x)g(x) = \frac{g(x)}{1/f(x)}$$
 or $f(x)g(x) = \frac{f(x)}{1/g(x)}$.

Now the limit can be attacked by the previous methods.

Evaluate the following limits:

Evaluate the following limits:

• Find $\lim_{x\to 0^+} x \ln(x)$.

(日) (同) (三) (三)

Evaluate the following limits:

- Find $\lim_{x\to 0^+} x \ln(x)$.
- Find $\lim_{x\to\infty} xe^{-x}$.

(日) (同) (三) (三)

Evaluate the following limits:

- Find $\lim_{x\to 0^+} x \ln(x)$.
- Find $\lim_{x\to\infty} xe^{-x}$.
- Find $\lim_{x\to\infty} x(\pi/2 \tan^{-1}(x))$.

A B A A B A

Image: Image:

The basic strategy for indeterminate differences

< ロ > < 同 > < 三 > < 三

The basic strategy for indeterminate differences

• An indeterminate difference is any limit of the form

$$\lim_{x\to a} \left(f(x) - g(x) \right)$$

in which f and g simultaneously approach $+\infty$ or $-\infty$.

The basic strategy for indeterminate differences

• An indeterminate difference is any limit of the form

$$\lim_{x\to a} \left(f(x) - g(x) \right)$$

in which f and g simultaneously approach $+\infty$ or $-\infty$.

• To handle an " $\infty - \infty$ "' form, use algebra to convert this form into one of the other forms.

Find
$$\lim_{u\to 0^+}\left(\frac{1}{1-e^{-u}}-\frac{1}{u}\right).$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Find
$$\lim_{u\to 0^+} \left(\frac{1}{1-e^{-u}}-\frac{1}{u}\right).$$

Solution

<ロ> (日) (日) (日) (日) (日)

Find
$$\lim_{u\to 0^+}\left(\frac{1}{1-e^{-u}}-\frac{1}{u}\right).$$

Solution

• This is called an " $\infty - \infty$ " form, since both terms are approaching $+\infty$.

(日) (同) (三) (三)

Find
$$\lim_{u\to 0^+}\left(\frac{1}{1-e^{-u}}-\frac{1}{u}\right).$$

Solution

- This is called an "∞ − ∞" form, since both terms are approaching +∞.
- We can force a common denominator:

$$\frac{1}{1-e^{-u}}-\frac{1}{u}=\frac{u-1+e^{-u}}{u(1-e^{-u})}$$

イロト 不得下 イヨト イヨト

Find
$$\lim_{u\to 0^+}\left(\frac{1}{1-e^{-u}}-\frac{1}{u}\right).$$

Solution

- This is called an "∞ − ∞" form, since both terms are approaching +∞.
- We can force a common denominator:

$$\frac{1}{1-e^{-u}}-\frac{1}{u}=\frac{u-1+e^{-u}}{u(1-e^{-u})}.$$

 As u → 0⁺, the right-hand-side is now a "0/0" form and can be treated using l'Hôpital's rule. The answer is 1/2.

A B F A B F

The basic strategy for indeterminate powers

(3)

< □ > < ---->

The basic strategy for indeterminate powers

• An indeterminate power is any limit of the form

 $\lim_{x\to a} f(x)^{g(x)}$

resulting in "00", " ∞^{0} " and "1 $^{\infty}$ ".

The basic strategy for indeterminate powers

• An indeterminate power is any limit of the form

 $\lim_{x \to a} f(x)^{g(x)}$

resulting in "00", " ∞^{0} " and "1 $^\infty$ ".

In each of these cases, first write

$$f(x)^{g(x)} = \exp(g(x) \ln f(x)).$$

The exponent, $g(x) \ln f(x)$, will be in one the preceding forms and can be handled by those methods.

Mark Woodard (Furman U) §7.8–Indeterminate forms and L'Hôpital's rule

ヘロト 人間 と 人間 と 人間 と

• Find
$$\lim_{x\to\infty} \left(1+\frac{1}{x^2}\right)^x$$
.

◆□> ◆□> ◆豆> ◆豆> □ 豆

• Find
$$\lim_{x \to \infty} \left(1 + \frac{1}{x^2} \right)^x$$
.

• Find
$$\lim_{x\to\infty} x^{1/x}$$
.

◆□> ◆□> ◆豆> ◆豆> □ 豆

• Find
$$\lim_{x \to \infty} \left(1 + \frac{1}{x^2} \right)^x$$
.

• Find
$$\lim_{x\to\infty} x^{1/x}$$

• Find
$$\lim_{x\to 0^+} x^{\sin(x)}$$

▲□ > ▲圖 > ▲目 > ▲目 > □ = − の < @