§7.1–Inverse Functions

Mark Woodard

Furman U.

Fall 2010

<ロ> (日) (日) (日) (日) (日)

Outline

2 Inverse functions

- ③ Finding inverse functions
- 4 The calculus of inverse functions

Image: Image:

.

Consider the following two examples of functional relationships among the ordered pairs:

$$f:(1,-1),(2,1),(3,2),(4,0)$$

and

We can easily "invert" these relations.

A B A A B A

_ ⊿ _ _ _

Consider the following two examples of functional relationships among the ordered pairs:

f:(1,-1),(2,1),(3,2),(4,0)

and

We can easily "invert" these relations.

• Are the resulting inverse relations functions?

()

Consider the following two examples of functional relationships among the ordered pairs:

f:(1,-1),(2,1),(3,2),(4,0)

and

We can easily "invert" these relations.

- Are the resulting inverse relations functions?
- How are the domains and ranges of the functions and their inverse relations related?

A B A A B A

Consider the following two examples of functional relationships among the ordered pairs:

f:(1,-1),(2,1),(3,2),(4,0)

and

We can easily "invert" these relations.

- Are the resulting inverse relations functions?
- How are the domains and ranges of the functions and their inverse relations related?
- By what tests can we tell whether a function will have an inverse function?

A B F A B F

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• A function f with domain D is called *one-to-one* if distinct elements of D have distinct images. In other words,

$$f(s) = f(t)$$
 if and only if $s = t$.

.

• A function f with domain D is called *one-to-one* if distinct elements of D have distinct images. In other words,

$$f(s) = f(t)$$
 if and only if $s = t$.

• Said another way, a function is called one-to-one if it never takes on the same value more than once.

• A function f with domain D is called *one-to-one* if distinct elements of D have distinct images. In other words,

f(s) = f(t) if and only if s = t.

• Said another way, a function is called one-to-one if it never takes on the same value more than once.

Example

The function $f(x) = x^2$ is not one-to-one since f(1) = 1 = f(-1). In other words, two different input values produce the same output value, in violation of the definition of one-to-one.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Theorem (Horizontal line test)

A function is one-to-one if and only if no horizontal line intersects its graph more than once.

()

Image: Image:

Theorem (Horizontal line test)

A function is one-to-one if and only if no horizontal line intersects its graph more than once.

Theorem (Increasing and decreasing)

If a function is either strictly increasing or strictly decreasing on an interval domain, then it is one-to-one.

3 K K 3 K

Show that $f(x) = x^3$ on $(-\infty, \infty)$ is one-to-one by

イロト イヨト イヨト イヨト

Show that $f(x) = x^3$ on $(-\infty, \infty)$ is one-to-one by

• the horizontal line test and by

(日) (同) (三) (三)

Show that $f(x) = x^3$ on $(-\infty, \infty)$ is one-to-one by

- the horizontal line test and by
- showing that it is increasing.

- (A 🖓

Show that $f(x) = x^3$ on $(-\infty, \infty)$ is one-to-one by

- the horizontal line test and by
- showing that it is increasing.

Problem

Show that
$$f(x) = 2x + \sin(x)$$
 is one-to-one on $(-\infty, \infty)$.

A B A A B A

- ∢ ศ⊒ ▶

Show that $f(x) = x^3$ on $(-\infty, \infty)$ is one-to-one by

- the horizontal line test and by
- showing that it is increasing.

Problem

Show that
$$f(x) = 2x + \sin(x)$$
 is one-to-one on $(-\infty, \infty)$.

Problem

Explain how to restrict the domain of the function $f(x) = x^2$ to make it one-to-one.

- 4 同 6 4 日 6 4 日 6

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

• Let f be one-to-one with domain A and range B. The inverse function of f, denoted by f^{-1} , has domain B and range A.

프 (프)

- Let f be one-to-one with domain A and range B. The inverse function of f, denoted by f^{-1} , has domain B and range A.
- f^{-1} maps y to x if and only if f maps x to y.

< 注入 (注入)

- Let f be one-to-one with domain A and range B. The inverse function of f, denoted by f^{-1} , has domain B and range A.
- f^{-1} maps y to x if and only if f maps x to y.
- Equivalently, for any $y \in B$,

 $f^{-1}(y) = x$ if and only if f(x) = y

医静脉 医原体 医原体

- Let f be one-to-one with domain A and range B. The inverse function of f, denoted by f^{-1} , has domain B and range A.
- f^{-1} maps y to x if and only if f maps x to y.
- Equivalently, for any $y \in B$,

$$f^{-1}(y) = x$$
 if and only if $f(x) = y$

Theorem (Cancellation equations)

Let f be one-to-one with domain A and range B.

A B < A B </p>

- Let f be one-to-one with domain A and range B. The inverse function of f, denoted by f^{-1} , has domain B and range A.
- f^{-1} maps y to x if and only if f maps x to y.
- Equivalently, for any $y \in B$,

$$f^{-1}(y) = x$$
 if and only if $f(x) = y$

Theorem (Cancellation equations)

Let f be one-to-one with domain A and range B. • $f^{-1}(f(x)) = x$ for each $x \in A$.

(日) (周) (三) (三)

- Let f be one-to-one with domain A and range B. The inverse function of f, denoted by f^{-1} , has domain B and range A.
- f^{-1} maps y to x if and only if f maps x to y.
- Equivalently, for any $y \in B$,

$$f^{-1}(y) = x$$
 if and only if $f(x) = y$

Theorem (Cancellation equations)

Let f be one-to-one with domain A and range B.

•
$$f^{-1}(f(x)) = x$$
 for each $x \in A$.

•
$$f(f^{-1}(y)) = y$$
 for each $y \in B$.

(日) (同) (三) (三)

Let $f(x) = \sqrt{x-4}$ on the interval $[4, \infty)$. Find $f^{-1}(x)$.

<ロ> (日) (日) (日) (日) (日)

Let
$$f(x) = \sqrt{x-4}$$
 on the interval $[4,\infty)$. Find $f^{-1}(x)$.

Problem

Let $f(x) = x^2 + 1$ on the interval $[0, \infty)$. Show that f is invertible and find f^{-1} .

(日) (同) (日) (日) (日)

Let
$$f(x) = \sqrt{x-4}$$
 on the interval $[4,\infty)$. Find $f^{-1}(x)$.

Problem

Let $f(x) = x^2 + 1$ on the interval $[0, \infty)$. Show that f is invertible and find f^{-1} .

Problem

Let $h(x) = x^3 + x + 5$. Show that f is one-to-one and find $h^{-1}(5)$.

イロト 不得下 イヨト イヨト 二日

Theorem

If f is invertible and continuous, then f^{-1} is continuous as well.

(日) (同) (三) (三)

Theorem

If f is invertible and continuous, then f^{-1} is continuous as well.

Theorem

If f is a one-to-one differentiable function with inverse function f^{-1} , (a, b) is on the graph of f, and $f'(a) \neq 0$, then f^{-1} is differentiable at b and

$$\left(f^{-1}
ight)'(b)=rac{1}{f'(a)}$$

()

Theorem

If f is invertible and continuous, then f^{-1} is continuous as well.

Theorem

If f is a one-to-one differentiable function with inverse function f^{-1} , (a, b) is on the graph of f, and $f'(a) \neq 0$, then f^{-1} is differentiable at b and

$$\left(f^{-1}
ight)'(b)=rac{1}{f'(a)}$$

Problem

Let
$$f(x) = x^3 + 3x$$
 and find $(f^{-1})'(4)$.

(日) (周) (三) (三)