§7.1–Inverse Functions

Mark Woodard

Furman U.

Fall 2010
Outline

1. One-to-one functions
2. Inverse functions
3. Finding inverse functions
4. The calculus of inverse functions
Example

Consider the following two examples of functional relationships among the ordered pairs:

\[f : (1, -1), (2, 1), (3, 2), (4, 0) \]

and

\[g : (1, 1), (2, 3), (3, 1), (4, 2) \]

We can easily “invert” these relations.
Example

Consider the following two examples of functional relationships among the ordered pairs:

\[f : (1, -1), (2, 1), (3, 2), (4, 0) \]

and

\[g : (1, 1), (2, 3), (3, 1), (4, 2) \]

We can easily “invert” these relations.

- Are the resulting inverse relations functions?
Example

Consider the following two examples of functional relationships among the ordered pairs:

\[f : (1, -1), (2, 1), (3, 2), (4, 0) \]

and

\[g : (1, 1), (2, 3), (3, 1), (4, 2) \]

We can easily “invert” these relations.

- Are the resulting inverse relations functions?
- How are the domains and ranges of the functions and their inverse relations related?
Consider the following two examples of functional relationships among the ordered pairs:

\[f : (1, -1), (2, 1), (3, 2), (4, 0) \]

and

\[g : (1, 1), (2, 3), (3, 1), (4, 2) \]

We can easily “invert” these relations.

- Are the resulting inverse relations functions?
- How are the domains and ranges of the functions and their inverse relations related?
- By what tests can we tell whether a function will have an inverse function?
Definition (One-to-one)

A function \(f \) with domain \(D \) is called one-to-one if distinct elements of \(D \) have distinct images. In other words, \(f(s) = f(t) \) if and only if \(s = t \).

Said another way, a function is called one-to-one if it never takes on the same value more than once.

Example

The function \(f(x) = x^2 \) is not one-to-one since \(f(1) = 1 = f(-1) \). In other words, two different input values produce the same output value, in violation of the definition of one-to-one.
Definition (One-to-one)

- A function f with domain D is called one-to-one if distinct elements of D have distinct images. In other words,

$$f(s) = f(t) \text{ if and only if } s = t.$$
Definition (One-to-one)

- A function f with domain D is called one-to-one if distinct elements of D have distinct images. In other words,

$$f(s) = f(t) \text{ if and only if } s = t.$$

- Said another way, a function is called one-to-one if it never takes on the same value more than once.
Definition (One-to-one)

- A function \(f \) with domain \(D \) is called one-to-one if distinct elements of \(D \) have distinct images. In other words,

\[
f(s) = f(t) \quad \text{if and only if} \quad s = t.
\]

- Said another way, a function is called one-to-one if it never takes on the same value more than once.

Example

The function \(f(x) = x^2 \) is not one-to-one since \(f(1) = 1 = f(-1) \). In other words, two different input values produce the same output value, in violation of the definition of one-to-one.
Theorem (Horizontal line test)

A function is one-to-one if and only if no horizontal line intersects its graph more than once.
Theorem (Horizontal line test)

A function is one-to-one if and only if no horizontal line intersects its graph more than once.

Theorem (Increasing and decreasing)

If a function is either strictly increasing or strictly decreasing on an interval domain, then it is one-to-one.
Problem

Show that $f(x) = x^3$ on $(-\infty, \infty)$ is one-to-one by
Problem

Show that $f(x) = x^3$ on $(-\infty, \infty)$ is one-to-one by

- the horizontal line test and by
Problem

Show that \(f(x) = x^3 \) on \((-\infty, \infty)\) is one-to-one by

- the horizontal line test and by
- showing that it is increasing.
Problem

Show that \(f(x) = x^3 \) on \((-\infty, \infty)\) is one-to-one by

- the horizontal line test and by
- showing that it is increasing.

Problem

Show that \(f(x) = 2x + \sin(x) \) is one-to-one on \((-\infty, \infty)\).
Problem

Show that \(f(x) = x^3 \) on \((-\infty, \infty)\) is one-to-one by

- the horizontal line test and by
- showing that it is increasing.

Problem

Show that \(f(x) = 2x + \sin(x) \) is one-to-one on \((-\infty, \infty)\).

Problem

Explain how to restrict the domain of the function \(f(x) = x^2 \) to make it one-to-one.
Definition (Inverse function)

Let f be one-to-one with domain A and range B. The inverse function of f, denoted by f^{-1}, has domain B and range A. f^{-1} maps y to x if and only if f maps x to y. Equivalently, for any $y \in B$, $f^{-1}(y) = x$ if and only if $f(x) = y$.

Theorem (Cancellation equations)

Let f be one-to-one with domain A and range B. $f^{-1}(f(x)) = x$ for each $x \in A$. $f(f^{-1}(y)) = y$ for each $y \in B$.
Definition (Inverse function)

Let f be one-to-one with domain A and range B. The inverse function of f, denoted by f^{-1}, has domain B and range A.

Theorem (Cancellation equations)

Let f be one-to-one with domain A and range B.

$f^{-1}(f(x)) = x$ for each $x \in A$.

$f(f^{-1}(y)) = y$ for each $y \in B$.

Definition (Inverse function)

- Let f be one-to-one with domain A and range B. The inverse function of f, denoted by f^{-1}, has domain B and range A.
- f^{-1} maps y to x if and only if f maps x to y.

\[f^{-1}(f(x)) = x \quad \text{for each } x \in A. \]
\[f(f^{-1}(y)) = y \quad \text{for each } y \in B. \]
Definition (Inverse function)

- Let f be one-to-one with domain A and range B. The inverse function of f, denoted by f^{-1}, has domain B and range A.
- f^{-1} maps y to x if and only if f maps x to y.
- Equivalently, for any $y \in B$,

 $$f^{-1}(y) = x \text{ if and only if } f(x) = y$$
Definition (Inverse function)

- Let f be one-to-one with domain A and range B. The inverse function of f, denoted by f^{-1}, has domain B and range A.
- f^{-1} maps y to x if and only if f maps x to y.
- Equivalently, for any $y \in B$,

$$f^{-1}(y) = x \text{ if and only if } f(x) = y$$

Theorem (Cancellation equations)

Let f be one-to-one with domain A and range B.

$$f^{-1}(f(x)) = x \text{ for each } x \in A.$$
$$f(f^{-1}(y)) = y \text{ for each } y \in B.$$
Definition (Inverse function)

Let \(f \) be one-to-one with domain \(A \) and range \(B \). The inverse function of \(f \), denoted by \(f^{-1} \), has domain \(B \) and range \(A \).

- \(f^{-1} \) maps \(y \) to \(x \) if and only if \(f \) maps \(x \) to \(y \).
- Equivalently, for any \(y \in B \),
 \[
 f^{-1}(y) = x \quad \text{if and only if} \quad f(x) = y
 \]

Theorem (Cancellation equations)

Let \(f \) be one-to-one with domain \(A \) and range \(B \).

- \(f^{-1}(f(x)) = x \) for each \(x \in A \).
Definition (Inverse function)

- Let f be one-to-one with domain A and range B. The inverse function of f, denoted by f^{-1}, has domain B and range A.
- f^{-1} maps y to x if and only if f maps x to y.
- Equivalently, for any $y \in B$,
 \[f^{-1}(y) = x \quad \text{if and only if} \quad f(x) = y \]

Theorem (Cancellation equations)

Let f be one-to-one with domain A and range B.

- $f^{-1}(f(x)) = x$ for each $x \in A$.
- $f(f^{-1}(y)) = y$ for each $y \in B$.
Problem

Let \(f(x) = \sqrt{x - 4} \) on the interval \([4, \infty)\). Find \(f^{-1}(x) \).
Problem

Let \(f(x) = \sqrt{x - 4} \) on the interval \([4, \infty)\). Find \(f^{-1}(x) \).

Problem

Let \(f(x) = x^2 + 1 \) on the interval \([0, \infty)\). Show that \(f \) is invertible and find \(f^{-1} \).
Problem

Let $f(x) = \sqrt{x - 4}$ on the interval $[4, \infty)$. Find $f^{-1}(x)$.

Problem

Let $f(x) = x^2 + 1$ on the interval $[0, \infty)$. Show that f is invertible and find f^{-1}.

Problem

Let $h(x) = x^3 + x + 5$. Show that f is one-to-one and find $h^{-1}(5)$.
The calculus of inverse functions

Theorem

If f is invertible and continuous, then f^{-1} is continuous as well.
The calculus of inverse functions

Theorem

If f *is invertible and continuous, then* f^{-1} *is continuous as well.*

Theorem

If f *is a one-to-one differentiable function with inverse function* f^{-1}, *(a, b) is on the graph of* f, *and* $f'(a) \neq 0$, *then* f^{-1} *is differentiable at* b *and*

$$(f^{-1})'(b) = \frac{1}{f'(a)}$$

Problem

Let $f(x) = x^3 + 3x$ and find $(f^{-1})'(4)$.

Mark Woodard (Furman U.)
§7.1–Inverse Functions Fall 2010 9 / 9
The calculus of inverse functions

Theorem
If f is invertible and continuous, then f^{-1} is continuous as well.

Theorem
If f is a one-to-one differentiable function with inverse function f^{-1}, (a, b) is on the graph of f, and $f'(a) \neq 0$, then f^{-1} is differentiable at b and

$$(f^{-1})'(b) = \frac{1}{f'(a)}$$

Problem
Let $f(x) = x^3 + 3x$ and find $(f^{-1})'(4)$.

Mark Woodard (Furman U.) §7.1–Inverse Functions Fall 2010 9 / 9