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THE SEARCH FOR ONE AS A PRIME NUMBER: FROM
ANCIENT GREECE TO MODERN TIMES

ANGELA REDDICK AND YENG XIONG

Abstract. It has often been asked if one is a prime number, or if there was a

time when most mathematicians thought one was prime. Whether or not the

number one is prime is simply a matter of definition, but definitions are often
decided by the use of mathematics. In this paper we will survey the history of

the definition of prime as applied to the number one, from the ancient Greeks
to the modern times. For the Greeks the numbers (αριθµoς) were multiples

of the unit, and for this reason one did not fall into the category of primes (a

subdivision of the numbers). This view held with few exceptions until Stevin
(c. 1585) argued successfully that one was a number, at which point it finally

made sense to ask if one is prime. This was followed by a period of confusion

which began to dissipate with Gauss’ Disquisitiones Arithmeticae. Our survey
will show that for most of history, one was not considered a prime, and there

was no point in time where a clear majority of mathematicians viewed one as

prime.

1. Introduction

It has often been asked if the number one is prime, or if there was a time when
most mathematicians thought one was prime. For example, the Online Encyclope-
dia of Integer Sequences has a sequence “Prime numbers at the beginning of the
20th century” which starts with one [74, Seq. A008578], and it is easy to find recent
books written by non-mathematicians which list one as a prime (e.g., [3, p. 342],
[16, p. 17] and [71, p. 76]).

Whether or not the number one is a prime is simply a matter of definition, but
definitions are often decided by the use of mathematics, and we will see that as
the uses of numbers changed so did views about the number one. In this paper we
will survey the history of the primality of the number one, from the ancient Greeks
to the modern times, along with some of the uses of primes which motivated the
different definitions.

The Greeks were the first to study the prime numbers and put them to use
in proving theorems. In the second section we will see that most of the ancient
Greek scholars did not view one as a number (as an αριθµoς, or positive integer)—
these numbers were multiples of the unit. For this reason, one did not fall into
their category of primes (a subdivision of the numbers). As we discuss in the third
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section, this view held with few exceptions until Stevin (c. 1585) argued successfully
that one was a number, and simultaneously laid the groundwork for the set of real
numbers, combining Euclid’s numbers (αριθµoς) with his magnitudes (µεγεθoς).

In his excellent thesis “The Concept of One as a Number,” C. Jones [44, p. 299]
writes:

In general, mathematics before Stevin is of one character and, after
him, it is of another reflecting his contributions. In this regard, he is
like Euclid: he stood at a watershed in the history of mathematics. And
as with Euclid, he was so successful that, from our present day vantage
point, it is hard to see the other side of that watershed. Over there, one
was not a number; here and now, it is; even π is a number, and i, and
aleph null.

In the fourth section we will discuss the period after one “becomes” a number
(so it finally makes sense to ask if it is a prime) and before Gauss publishes his
Disquisitiones Arithmeticae, which cemented unique factorization into primes as a
key principle for the integers. In the fifth section, we will briefly mention how the
discovery of number fields in general, and units in particular, sounded the death
knell for one as a prime.

2. Greeks (600 BC–100 AD)

The Greeks were the first to formally study primes—so we begin with them. We
will see that for most Greeks one was not a number, hence not a prime. In fact, for
many the same holds for two.

According to Heath in his History of Greek Mathematics, “The first definition of
number is attributed to Thales (c. 600 BC), who defined it as a collection of units”
[38, p. 69]. Primes were defined as subsets of the numbers, so if one (the monad1)
is excluded from the numbers, it cannot be prime. Aristotle (c. 384–322 BC) also
“observes that the One is reasonably regarded as not being itself a number, because
a measure is not the things measured,2 but the measure of the One is the beginning
of number” [38, p. 69].

The Pythagoreans (c. 500 BC) had a similar view of one, but endowed with deep
mysticism:

According to this principle the geometric figures and the numbers are
divinely and inextricably linked. One, the monad, is not a number.
It is the principle of ‘sameness’ of stability, right, equality, light. In
eternal opposition is the dyad [two], the principle of ‘otherness,’ muta-
bility, diversity, inequality, darkness. Itself not a number, it is the link
between the monad and numbers. Three then is the first number in
the Pythagorean sense, for as rennet curdles flowing milk by its peculiar
creative and active faculty, so the unifying force of the monad advancing
upon the dyad, source of every movement and breaking down, infixed
a bound, and a form, that is number upon the triad; for this is the
beginning of actual number. Three is the first number because number

1A monad, from the Greek µoνάς, is another word for a unit or unity.
2For the Greeks “a measures b” if b = a + a + . . . + a for some finite number of terms, e.g.,

6 = 2+2+2, so 2 measures 6; this is very similar to the modern notion of divides, but usually a
number is not viewed as measuring itself.
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is limited by form and the triangle is the first plane figure. (Hopper [41,
pp. 410-411])

Although Euclid (c. 300 BC) was not the first to define prime, for the most part
his definitions stood for two thousand years. In the first two of these definitions
from Euclid’s Elements book VII [37, p. 277] Euclid defines the numbers (αριθµoς),
and in the third he defines prime.

Definition 1: A unit is that by virtue of which each of the things that
exist is called one.
Definition 2: A number is a multitude composed of units.
Definition 11: A prime number is that which is measured by a unit
alone.

As with most of the other ancient writers, Euclid did not need to say explicitly that
one was not a prime because primes were a subcategory of the numbers, and one
was not a number.

Neo-Pythagoreans Nicomachus (c. 100 AD) and Iamblichus (c. 250–325 AD)
expanded on much of Euclid’s work. Not only did they exclude two from the prime
numbers, but they also defined composite numbers, numbers prime to one another,
and numbers composite to one another as excluding all even numbers; they made
all these categories subdivisions of odd [38, p. 73]. (That is, Nicomachus and
Iamblichus said two is a number, just not a prime number.) Euclid, however, along
with Aristotle (c. 384–322 BC) and Theon of Smyrna (c. 100 AD), included two
among the prime numbers [38, p. 73]. All of these excluded one from the primes. A
rare exception from this practice was Speusippus (c. 350 BC) who considered both
one and two to be numbers and to be prime [77, p. 264, 276].

It can now be seen that while the Greeks were among the first to define what it
means to be a number and a prime, these definitions excluded one (and sometimes
two) from these categories. As one was not considered to be a number by most
Greek mathematicians, there was not even a question about its primality: one was
not a number, therefore it was not a prime.

3. Until Stevin argues one is a number (100–1585)

In the period between the Greeks and when one is finally widely accepted as
a number, the integers began to slowly lose their mysticism. This period ends as
Simon Stevin shows how to unite Euclid’s numbers (αριθµoς) and his magnitudes
(µεγεθoς) into the modern reals, and as one begins to gain wide acceptance as a
number.

We will use several extended quotes from Martianus Capella (c. 400 AD) [76,
pp. 285-6] to illustrate this period:

We have briefly discussed the number comprising the first series, the
deities assigned to them, and the virtue of each number. I shall now
briefly indicate the nature of number itself, what relations number bear
to each other, and what forms they represent. A number is a collection
of monads or a multiple preceding from a monad and returning to a
monad.

This correspondence between deities and the numbers, which continued in various
forms for some time, is an example of how this period’s use of number differed
from the modern. This difference makes many of their statements seemed obtuse,
though they are still recognizable. For example, Capella defined prime as follows.
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Numbers are called prime which can be divided by no number; they are
seen to be not ‘divisible’ by the monad but ‘composed’ of it: take, for
example, the numbers five, seven, eleven, thirteen, seventeen, and others
like them. No number can divide these numbers into integers. So they
are called ‘prime,’ since they arise from no number and are not divisible
into equal proportions. Arising in themselves, they beget other numbers
from themselves, since even numbers are begotten from odd numbers,
but an odd number cannot be begotten from even numbers. Therefore
prime numbers must of necessity be regarded as beautiful.

Again, we see one is not considered prime as it is not a number.
Let us consider all numbers of the first series according to the above
classifications: the monad is not a number; the dyad is an even number;
the triad is a prime number, both in order and in properties; the tetrad
belongs in the even times even class; the pentad is prime; the hexad
belongs to the odd times even or even times odd (hence it is called
perfect); the heptad is prime; . . .

Capella’s view (like Nicomachus’ (c. 100) before him) that primes are a subset of
the odds (so three was the first prime) was shared by many others: for example
Boethius (c. 500) [58, pp. 89-95], Cassiodorus (c. 550) [35, p. 5], Isidore of Seville
(c. 636) [35, pp. 4-5], and Hugh of St. Victor (c. 1120) [35, p. 56].

Most of the rest just omitted one from our modern list of primes, since primes
were a category of number, and as J. Kobel writes in 1537 [59, p. 20]:

Darauss verstehstu das 1. kein zal ist / sonder es ist ein gebererin /
anfang / und fundament aller anderer zahlen.

That is,
Wherefrom thou understandest that 1 is no number / but it is a gener-
atrix / beginning / and foundation for all other numbers.

For example, al-Kind̄ı (c. 850) not only argued at great length that one is not a
number, but concluded further that it is neither even nor odd [46]. Since most
mathematicians at this time still follow the Greeks, removing one as a number,
why should writers such as Kobel, Prosdocimo (c. 1483) [75, pp. 13-4], G. Zarlino
(c. 1561) [85, p. 22], even bother asking if one should be prime? They just started
their lists of primes at two, as did P. A. Cataldi [17, p. 40] in 1603, C. Clavius
[23, p. 307] in 1611, M. Mersenne [60, pp. 298-9] in 1625, A. Metius in 1640 [61,
pp. 43-4], M. Bettini in 1642 [10, p. 36], etc.

This period ended as Simon Stevin (1548–1620) successfully argues one is a
number, and while at it, that Euclid’s distinction between numbers and magnitude
should end—which essentially begins the development of the modern real numbers
as Katz and Katz note [45]:

Stevin created the basis for modern decimal notation in his 1585 work
De Thiende (“the art of tenths”). He argued that quantities such as
square roots, irrational numbers, surds, negative numbers, etc., should
all be treated as numbers and not distinguished as being different in
nature.

Stevin did this by providing notation for real numbers written in base 10 and
providing algorithms for their manipulation. This change in notation is fundamental
to changing how numbers were viewed:
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I believe there is no symbolism before about 1600, apart from numerals
and a few things that are better described as abbreviations-may be
connected with a new fluency in arithmetised thinking, which itself may
owe a lot to the popularisation of decimal fractions at the end of the
15th century. Stevin, for example, was a thorough-going arithmetiser:
he published, in 1585, the first popularisation of decimal fractions in the
West (both in Dutch, De Thiende, and French, La Disme); in 1594, he
described an algorithm for finding the decimal expansion of the root of
any polynomial, the same algorithm we find later in Cauchy’s proof of
the intermediate value theorem to which I referred above; and he argued
vigorously for an arithmetical understanding of the Elements, including
its notorious Book X. (Fowler [30, p. 732])

For an excellent discussion of Stevin’s view of one see Jones’ fine thesis “The concept
of one as a number,” which discusses it at great length [44]. What is important
here for the present paper is that for the first time, after two thousand years of
one being omitted from the primes, by default one is now a number so it is now
reasonable to ask: “is one prime?”

4. Until Gauss’ ‘uniqueness’ (1585–1800)

During this period, the mathematicians before Gauss generally used prime num-
bers for factorization, but not usually for unique factorization. In their history of
the Fundamental Theorem of Arithmetic, Ağargün and Özkan write that at this
time “prime factorization was not looked upon as something of interest in its own
right, but as a means of finding divisors” [2, p. 211].

Similarly, Ağargün and Fletcher write [1]:
. . . it is significant that Propositions VII.31 and VII.30 of the Elements
lead immediately to their proofs although Euclid forbears to take these
steps. The first known proof of existence is due to al-Farisi (died c.1320),
but he did not go on to prove uniqueness, mainly because his interest was
in the divisors of a number rather than the factorisation itself . . . And
if a mathematician’s interest is in greatest common divisors, or perfect
numbers, or amicable numbers then the divisors are the crucial objects,
whereas the prime factorisation is just a means to an end.

We will illustrate this with a couple of common uses: finding divisors in order to
find amicable and perfect numbers, and calculating logarithms of large integers.

Amicable numbers are defined as “a pair of numbers of which each of them is
mutually equal to the sum of all the aliquot parts of the other” [43, p. 104]. In
modern notation we let σ(n) be the sum of the positive divisors of n and say that
two integers m, n are an amicable pair if they satisfy the following:

σ(m) = m+ n = σ(n).

For example 220 and 284 are an amicable pair because

σ(220) = 1 + 2 + 4 + 5 + 10 + 20 + 11 + 22 + 44 + 55 + 110 + 220 = 220 + 284 = 504

= 1 + 2 + 4 + 71 + 142 + 284 = 220 + 284 = σ(284).

These special numbers had always have a special meaning of friendship—hence
their name—due to their unique properties. Dickson noted that in Genesis 32:14
Jacob sent Esau 200 ewes and 20 rams, which amount to 220 goats, and that Rau
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Nachshon (c. 850) comments “This number 220 (of goats) is a hidden secret . . . tried
by the ancients in securing the love of kings and dignitaries” [26, p. 39].

In addition, writers of this period were also very interested in perfect numbers3,
which are “that, all whole aliquot parts added together, make the same number
with the number whereof they are such parts” [19]. In the modern definition, an
integer n is considered a perfect number if

σ(n) = 2n.

Thus 6 is a perfect number because

σ(6) = 1 + 2 + 3 + 6 = 2 · 6.

Much like amicable numbers, perfect numbers also held great significance. For
instance, St. Augustine (c. 354) in his book The City of God [5, p. 337] wrote:

These works [God’s] are recorded to have been completed in six days (the
same day being six times repeated), because six is a perfect number—
not because God required a protracted time, as if He could not at once
create all things, which then should mark the course of time by the
movements proper to them, but because the perfection of the works was
signified by the number six.

However, to find examples of perfect and amicable numbers, they needed to find
factorizations, but it did not matter whether or not the number one was prime.
One could be ignored in factorization.

Aside from finding amicable and perfect numbers, mathematicians used factor-
ization in computing logarithms. John Napier (1550) developed the logarithms so
that the calculation with large numbers would be easier. For example, the loga-
rithms have the wonderful property that

logb(ac) = logb(a) + logb(c).

Therefore, multiplication becomes addition. This made prime factorizations useful
to astronomers and scientists of this period in computing logarithms of large num-
bers. James Glaisher (1848) describes this process as follows in Factor Table to the
Fourth Million [33, p. 46]

Since the logarithm of a number is equal to the sum of the logarithms
of its factors, it follows that if we have a table of logarithms of num-
bers up to a number n, we can obtain from it by simple addition the
logarithm of any number whose greatest factor does not exceed n. A
factor table therefore indicates all the numbers included in its range
whose logarithms are obtainable by simple addition, and it also affords
a simple method of calculating the logarithms of the others; for if the
logarithm of a number x be required, and if it be prime, or its prime
factors be not all less than n, we may seek in the neighborhood of x for
a number x± a whose prime factors are all less than n, and deduce the
logarithm of x from that of x± a by means of the formula

log x = log(x± a)∓ a

x
+

1
2
a2

x2
∓ 1

3
a3

x3
+ &c.

3Euclid showed in his Elements Book IX that if 2n − 1 is prime, then 2n−1(2n − 1) is perfect
(Proposition 36). Later Euler proved in his Tractatus de numerorum doctrina capita sedicim,
quae supersunt that any even perfect number has this form [28].
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In this period astronomers and mathematicians would have tables of factoriza-
tions and logarithms on their shelves, but the log table might not reach as far as
needed. So to compute the logarithm of a larger number, they would look for com-
posites near this number, or near a small multiple of it. Glaisher gave an example
[33, p. 46] using the prime 43867, which was beyond the limits of many log tables.
Since

90 · 43867 = 3, 948, 030 = 172 · 19 · 719 + 1,
it follows then that

43867 =
1
90

(172 · 19 · 719 + 1)

so (solving Glaisher’s equation for log(x+ a) instead of log(x))

log 43867 = 2 log 17 + log 19 + log 719− log 90+

+
1

3, 948, 029
− 1

2
1

(3, 948, 029)2
+

1
3

1
(3, 948, 029)3

−&c.

The log used here is the natural log which at that time was called the hyperbolic
log.

Again, though prime factorizations are used throughout this period, these uses
rarely required unique factorization, so the question of whether the number one
is a prime did not matter, and no consensus on the definition was established.
For example, among those who wrote that one was prime were Brancker and Pell4

(1668) [66, p. 114], F. Wallis (1685) [79, p. 292], G. S. Krüger (1746) [50, p. 839],
M. L. Willich (1759) [84, p. 831], N. Caille and K. Scherffer (1762) [15, p. 13],
J. H. Lambert (1770) [51, p. 73], A. Felkel (1776) [29], E. Waring (1782) [80, p. 379],
A. G. Rosell (1785) [70, p. 39], A. Bürja (1786) [14, p. 45], etc. On the other hand,
those who defined two as the first prime included F. Schooten (1657) [73, pp. 393-
403], C. Chales (1690) [18, p. 169], J. Ozanam (1691) [65, p. 27], F. Brunot (1723)
[12, p. 3], J. Cortes (1724) [24, p. 7], C. R. Reyneau (1739) [69, p. 248], S. Horsley
(1772) [42, p. 332], etc.

In general, in this period the primality of one was not a matter of concern.
Since the uniqueness of a factorization was not important to the main uses, the
number one could be called prime or not. Usually most mathematicians ignored
one in factorization even by those who labeled it prime. W. Milne illustrated this
approach in his 1892 schoolbook [62] in which he wrote one as prime [pp. 91-2] but
then omits it from the prime factorization of 1008 [p. 95].

5. Modern times (1800–present)

The modern use of primes began when Gauss proved that a number can be
factored uniquely into primes (in articles 13-16 of his Disquisitiones Arithmeticae)
[32, p. 6]:

Theorem 16. A composite number can be resolved into prime factors in
only one way.

This completed (what we now call) the Fundamental Theorem of Arithmetic [25,
pp. 1-2]:

4M. Bullynck notes [13, p. 7] “The authorship of this book has been a matter of debate, but
it is by now certain that Rahn was a student of Pell in Zürich and mainly used Pell’s lectures
to write his book. Already in 1668 the book has therefore been known as Pell’s Algebra, and
the Table of Incomposits has likewise been known as Pell’s Table, though Keller and Brancker,

independently, calculated it.”
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Theorem 1 (Fundamental Theorem of Arithmetic). For each natural number n
there is a unique factorization

n = pa1
1 p

a2
2 · · · p

ak

k ,

where exponents ai are positive integers and p1 < p2 < · · · < pk are primes.

The introduction of uniqueness changed the way that prime numbers were used,
for now Gauss has codified Dirichlet’s view that “the prime numbers are the material
from which all other numbers may be built” [27, p. 9].

At this point, if one is a prime number, then we must state our theorems very
carefully or unique factorization will be violated, so uniqueness was central to the
demise of the view of one as a prime number among mathematicians. However, we
believe that there is indeed something deeper and more fundamental than unique-
ness involved here. At about the same time of Gauss’ unique factorization, integers
were generalized in several ways, each of which requires the notion of prime to be
redefined. For example, when we add the negative integers to the positive, should
we consider −3 to be a prime? What about the Gaussian “integers” a + bi where
a and b are integers? In this set, which, if any, of 3,−3, 3i,−3i should be a prime?

These types of examples prompted three changes: first, those numbers which
divide one are separated into a special category called the units (e.g., in the
integers {1,−1}, in the Gaussian integers {i,−i}); these units are excluded from
the primes. Second, a prime element became one which satisfied the property
described in Euclid’s lemma (Book VII, Prop. 30, Euclid’s Elements [37, p. 331]),
which says that if a prime divides a product of two numbers, then it divides at least
one of them. Therefore, in a modern text, a prime might be defined as follows:

Definition. A non-unit element a of an integral domain is prime if
whenever a divides the product bc, either a divides b or a divides c.

Similarly, an element q is an irreducible element if q cannot be written as a product
of two non-units. Third, the notion of prime element became generalized to the
prime ideal. All we need to say about this third case is units are excluded from
generating prime ideals (because they generate the whole domain). Therefore, by
all three, one is not a prime in the modern sense—a sense that takes root in Gauss’
work.

For the reasons given above, at about this time, omitting one from the primes
starts to become the standard among mathematicians and expositors: G. S. Klügel
(1808) [47, p. 282], P. Barlow (1811) [7, p. 54], M. Ohm (1834) [64, p. 140], A. Rey-
naud (1835) [68, pp. 48-9], P. L. Chebyshev (1854) [20, p. 51], E. Meissel (1870)
[33, p. 34], H. Scheffler (1880) [72, p. 79], G. Wertheim (1887) [83, p. 20], E. Lucas
(1891) [55, pp. 350-1], P. Bachmann (1893) [6, p. 135], E. Landau (1909) [52, p. 3],
H. Mangoldt (1912) [56, p. 176], E. Hecke (1923) [39, p. 5], B. L. van der Waerden
(1949) [78, p. 59], etc.

So is that it? Has it been settled since Gauss that the number one is not prime?
No, there are at least two reasons people may still wish to call one prime.

First, some might define one as prime due to tradition. For example, since the
days of Pell’s famous tables (1668) [57], many table makers had labeled one as
prime. Table makers that continued this tradition are J. H. Lambert (1770) [51,
p. 73], J. G. Garnier (1818) [31, p. 86], E. Hinkley (1853) [40, p. 7], T. Bertrand
(1863) [9, p. 342], J. Glaisher (1876) [33, p. 232], etc. The last to do this (and
one of the last to create tables of primes essentially by hand) was D. N. Lehmer in
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1914. He explains the thinking of these table makers in the very first paragraph of
the preface to his widely distributed table [54]:

The number one is certainly not composite in the same sense as the
number six, and if it is ruled out of the list of primes it is necessary to
create a particular class for this number alone.

Now (and even in his day) there is a category for the number one: the units, but
D. N. Lehmer clung to table makers’ tradition.

Secondly, some label one as prime because they take Euclid’s definition out of
context. If we ignore that Euclid did not consider one a number, and essentially
transliterate, we would get: a prime is a number only divisible by itself and one.
This is often done by expositors such as M. Kraitchik (1942) [48, p. 78], A. Beiler
(1964) [8, p. 223], etc. and writers who present mathematics tangentially like O.
Gregory (1825) [36, pp. 44-5], C. Aschenborn (1867) [4, p. 86], E. Brooks (1873)
[11, p. 58], W. Milne (1892) [62, pp. 91-2], etc. Some others that labeled one
as prime wrote for students and the general public so they often lagged behind or
simplified definition. This includes: A. M. Chmel (1807) [21, p. 65], A. M. Legendre
(1830) [53, p. 14], F. Minsinger (1832) [63, pp. 36-7], J. Weigl (1848) [82, p. 28],
J. Ray (1866) [67, p. 50], K. Weierstrass (1876) [81, p. 391], L. Kronecker (1901)
[49, p. 303], G. Chrystal (1904) [22, p. 38], etc.

Despite the fact that some people might define one to be a prime number, es-
sentially all modern mathematicians exclude one from the primes.

6. Conclusion

Again, the primality of one is only a matter of definition. If we restrict our view
to the positive integers and define the number one to be prime, it would be possible
to change the theorems involving the use of primes. For example, the Fundamental
Theorem of Arithmetic (Theorem 1) could be adjusted by adding the two characters
“1 <” as follows:

Theorem 2. For each natural number n there is a unique factorization

n = pa1
1 p

a2
2 · · · p

ak

k ,

where exponents ai are positive integers and 1 < p1 < p2 < · · · < pk are primes.

However, as we have seen, these adjustments become very difficult when we
generalize to other number systems such as number fields. Thus modern usage
requires that one be omitted from the list of primes, not just for convenience (as
implied by many such as Gowers [34]), but because 1, like −1 and ±i, is a unit,
and therefore, fundamentally different from the other numbers.

In our brief survey we have shown that the claim “one used to be a prime,” is
false, and surprisingly, for much of history one was not even a number. We have
also shown there is no evidence that viewing one as a prime was ever a majority
position at any time, and that Euclid, Cataldi, Mersenne, Euler, Gauss, etc. all
omitted one from the primes. On the other hand, we have seen that there were
(and are) traditionalists and others who have held the opposite view for much of
the last few hundred years.

In a future paper we hope to explore the question of who was the last major
mathematician to view one as a prime.
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[47] G. S. Klügel, Mathematisches Wörterbuch, Der Reine Mathematik, Leipzig, 1808, Available
fron http://books.google.com/books?id=9jgDAAAAQAAJ.

[48] M. Kraitchik, Mathematical Recreations, Dover, New York, 1953.

[49] L. Kronecker, Vorlesungen über Mathematik, vol. 2, pt 1, B. G. Teubner, 1901, available
from http://archive.org/details/vorlesungenberm00krongoog.
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