Abstract Thompson's group F was introduced by Richard Thompson in the 1960's and has since found applications in many areas of mathematics including algebra, logic and topology. We focus on the dead end depth of F, which is the minimal integer N such that for any group element, g there is guaranteed to exist a path of length at most N in the Cayley graph of F leading from g to a point farther from the identity than g is. By viewing F as a diagram group, we improve the greatest known lower bound for the dead end depth of F with respect to the standard consecutive generating sets.
Back To Volume Fifteen Contents
Furman University Electronic Journal of Undergraduate Mathematics