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A DYNAMICAL PROGRAMMING SOLUTION FOR SHORTEST
PATH ITINERARIES IN ROBOTICS

MARTIN TALBOT

Abstract. In robotics, more precisely Autonomous Mobile Robotics (AMR),

robots, much like human beings, are confronted regularly with the problem
of finding the best path to take from a source location to a destination loca-

tion. This is an optimization concern, since the robot wants to minimize its
cost in time or in energy while achieving its goal. Different algorithms exist for
shortest path computation; the famous Dijkstra’s Shortest Path Algorithm will

solve single-source shortest path problems in near linear time (O(mn log n)).
However, for certain complex optimization path-planning problems, this algo-
rithm alone is insufficient. We will study a dynamical formulation using Integer

Programming (IP) to solve complex path-planning problems in robotics.

1. Overview

Figure 1 represents a map; the reader can imagine a building’s floor viewed from
above. The nodes symbolize the possible starting and arriving locations allowed
(source and destination), and the edges represent the possible paths that the robot
can take to travel from node to node (location to location). The values in the boxes
attached to each pair of edges indicate the cost to travel along them; in this case,
we assume the units are minutes. Note that integers are used for simplicity.

A non-complex shortest or trivial shortest path problem is the shortest
path computation between a source and a destination. For example, referring to
Figure 1, finding the shortest path between node 1 and node 7, or node 9 and node
10. The next paragraph presents a more complex shortest path problem.

Imagine a robot having to perform security runs at different locations in a build-
ing (Figure 1). Presume that a robot who is presently at node 1 is asked to visit
node 13, node 11, and node 8 in any order, then stop and wait at node 7 until it gets
a new mission. From this, the robot must start at its actual position (node 1), finish
at node 7 and visit nodes 13, 11 and 8 in such a way that the sum of the costs of
the shortest paths between these five nodes must be optimized to a minimum. We
define such missions as itineraries or tours. An itinerary or a tour requires a two-
stage optimization algorithm. It is the optimal sequence or concatenation of trivial
shortest paths for a mission. In the particular example above, the tour should be
expressed as the optimal concatenation of 4 shortest paths. This problem is known
to be NP-complete. (Problems for which a solution can be checked in polynomial
time are said to belong to class NP. NP-complete problems have the property that
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Figure 1

if any of these problems can be solved by a polynomial worst-case time algorithm,
then all can be solved by polynomial worst-case time algorithms. It is accepted, but
not proven that no NP-complete problems can be solved in polynomial time [5].)
We remark on similarities to the Travelling Sales Person (TSP) problem, although
with an important distinction (for an example, see [14] chapter 9). A typical TSP
problem has n cities to visit, and each city must be visited exactly once in a way to
minimize the total distance travelled (cost), and avoiding subtours1. Here we have
16 “cities”, but only 5 must be visited; the other 11 are transitory nodes/cities that
may or may not be visited. This problem is complex, and becomes more difficult if
some edges must be avoided during a tour, for instance because of construction in
the corridor x1,5 and x5,1.

This security run scenario shows that Dijkstra’s Shortest Path algorithm alone
is not enough to solve the problem under consideration. Using the best algorithms
available, NP-complete problems can be solved in exponential running time on
nondeterministic machines [13]. Unfortunately, because of the 11 transitory-node
particularities, I could not find an algorithm that would solve such a problem at
once. Since a traditional shortest path algorithm such as Dijkstra’s can only solve
one part of the problem, another distinct algorithm is needed to compute the final
solution. However, this is not true if IP is used. I will present how the simplex
algorithm can be used as a unique algorithm to solve such intricate problems. Before
we start, I would like to talk briefly about performance, sensitivity analysis, and
duality.

1A subtour is a round trip that does not include all the nodes that are to be visited
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2. Algorithm’s Performance

Although the average empirical complexity of the simplex algorithm is O(2mn),
in practice the computation has been observed to take roughly m iterations, and sel-
dom more than 3m iterations 2 [8]. Furthermore, the type of problem addressed here
implies sparse matrices; this favours fast computation. However, computational
performance is not an issue. The ratio path-computation-time / robot-travelling-
time is so small that we should worry more about software’s design homogeneity
than speed and space complexity3. Will we implement n distinct algorithms to
solve our n optimization problems or will we implement a single one (i.e. the sim-
plex algorithm in a base class using an Object Oriented Programming Language),
and utilize inheritance & polymorphism to solve all our problems? If we decide to
go with the simplex algorithm, then there is no need to reinvent the wheel; there
are efficient implementations of the simplex algorithm (e.g. Matlab).

3. Sensitivity Analysis and Duality

Two of the most important topics in Linear Programming are Sensitivity Anal-
ysis and Duality. Unfortunately, we will not discuss them much here, except to
mention that the use of sensitivity analysis will speed up the computation as fol-
lows. In order to initiate the simplex algorithm for the first trivial shortest path
problem posed, we require the introduction of artificial variables. As the simplex
algorithm proceeds, these variables will eventually leave the basis. When they do,
they can be eliminated, and this has the effect of reducing the size of the matrix
involved in the computation. As we know, the simplex method can be visualized
in tableau format, with the final solution referred to as the final tableau. The
final tableau expresses the solution for the trivial shortest path. The idea is to
restart from this final tableau to find the next trivial shortest path. In order to
do that, we must alter the final tableau’s right-hand-side to express a new starting
source (which is the previous destination) and a new destination (see formulation
B, section 12). Because this action makes the current tableau infeasible (negative
values on the right-hand-side), we use the dual simplex method to regain feasibility.
When feasibility is regained, we apply the simplex algorithm, this time with possi-
bly less artificial variables than we had previously. Thus, using sensitivity analysis
we can start from the basis obtained from the solution of the previous path without
introducing artificial variables. The speed at which the simplex method finds the
optimal solution depends polynomially on the number of variables in the problem,
so the fewer variables needed the faster will be the computation of the solution.

4. IP Mathematical Model

Let us now take a look at the IP mathematical model that we will be using to
optimize our tour. I have opted for the MCNFP (Minimum Cost Network Flow
Problems) model.

Below, I will define the model, and I will describe the symbols in relation to
our specific AMR shortest path problem, which is derived from Figure 1. I will
build a mathematical model to solve a trivial shortest path problem, and I will
briefly explain the responsibilities of the different sets of constraints. Finally, we

2Where the coefficient matrix A (constraints matrix) is m× n
3Memory is cheap and computers are fast
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will examine how edges can be avoided or forced. Later, we will solve the security
run problem mentioned in section 1, using the knowledge gained from sections 5,
6, 7, 8, 9, 10 and 11.

5. MCNFP Model Definition

(1) Minimize
∑

all edges
cijxij

such that: xij − xki = bi (for each node i in the network)
Lij ≤ xij ≤ Uij (for each edge in the network)

6. MCNFP Symbol Description

xij represents the number of units sent through the arc (or edge) joining node i to
node j. Here, we have one robot, and therefore a single unit. Hence, x is either 1
or 0. Simply put, either the robot takes this edge (x = 1) or does not (x = 0).

cij represents the cost of travelling the edge xij . For example, in Figure 1, travelling
along the edge x1,2 costs 2 minutes, while travelling along the edge x2,3 costs 7
minutes.

bi represents the net supply. Again, there is only one robot. If i is a source (starting
node), it has value 1 at node i. If i is a destination, it has value -1 at node i. If node
i is neither a source nor a destination, then it must be 0, because it is a transitory
node and what enters must leave.

Lij represents the lower bound on the flow through edge ij, and Uij represents the
upper bound. Here, the lower bound is zero, and the upper bound is 1. Not more
than one robot can travel on edge ij, and not less than zero.

7. Trivial Shortest Path Problem

Now, let us consider a trivial shortest path problem and build an appropriate
IP formulation for this problem. Imagine our robot needs to find the shortest path
between its actual position (say node 1), and the destination (say node 10 - refer
to Figure 1). The following mathematical model in Formulation A expresses this
scenario:

(Objective function)
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min z = 2x1,2 + 2x2,1 + 3x1,5 + 3x5,1 +
7x2,3 + 7x3,2 + 4x2,6 + 4x6,2 +
1x3,4 + 1x4,3 + 3x3,7 + 3x7,3 +
4x4,8 + 4x8,4 + 1x5,6 + 1x6,5 +
7x5,9 + 7x9,5 + 5x6,7 + 5x7,6 +
2x6,10 + 2x10,6 + 9x7,8 + 9x8,7 +
3x7,11 + 3x11,7 + 7x8,12 + 7x12,8 +
9x9,10 + 9x10,9 + 5x9,13 + 5x13,9 +
4x10,11 + 4x11,10 + 6x10,14 + 6x14,10 +
8x11,12 + 8x12,11 + 6x11,15 + 6x15,11 +
5x12,16 + 5x16,12 + 1x13,14 + 1x14,13 +
4x14,15 + 4x15,14 + 2x15,16 + 2x16,15

SUBJECT TO:

(Subject to the following constraints)

1) x1,2 − x2,1 + x1,5 − x5,1 = 1
2) −x1,2 + x2,1 + x2,3 − x3,2 + x2,6 − x6,2 = 0
3) −x2,3 + x3,2 + x3,4 − x4,3 + x3,7 − x7,3 = 0
4) −x3,4 + x4,3 + x4,8 − x8,4 = 0
5) −x1,5 + x5,1 + x5,6 − x6,5 + x5,9 − x9,5 = 0
6) −x2,6 + x6,2 − x5,6 + x6,5 + x6,7 − x7,6 + x6,10 − x10,6 = 0
7) −x3,7 + x7,3 − x6,7 + x7,6 + x7,8 − x8,7 + x7,11 − x11,7 = 0
8) −x4,8 + x8,4 − x7,8 + x8,7 + x8,12 − x12,8 = 0
9) −x5,9 + x9,5 + x9,10 − x10,9 + x9,13 − x13,9 = 0

10) −x6,10 + x10,6 − x9,10 + x10,9 + x10,11 − x11,10 + x10,14 − x14,10 = −1
11) −x7,11 + x11,7 − x10,11 + x11,10 + x11,12 − x12,11 + x11,15 − x15,11 = 0
12) −x8,12 + x8,12 − x11,12 + x12,11 + x12,16 − x16,12 = 0
13) −x9,13 + x13,9 + x13,14 − x14,13 = 0
14) −x10,14 + x14,10 − x13,14 + x14,13 + x14,15 − x15,14 = 0
15) −x11,15 + x15,11 − x14,15 + x15,14 + x15,16 − x16,15 = 0
16) −x12,16 + x16,12 − x15,16 + x16,15 = 0
17) ∀xij = (0, 1)

FORMULATION A (For trivial shortest Path, source node1, destination node 10)

8. Responsibilities Of Constraints

The objective function (c ·x) represents the sum of the costs of all possible paths
in the network. The robot wants to minimize this function, therefore the costly
edges such as x7,8 and x9,10 must be avoided as much as possible. The best way to
do so is to set these variables equal to zero.

The constraints 1 to 16 (xij − xki = bi) express each node’s function: source,
destination or transitory nodes. Every node is defined by its in-points ( set negative)
and out-points (set positive). Here, the robot is interested in travelling from node 1
to node 10. The starting node and the destination node must be unique. These are
expressed on the right hand side of the constraints. Thus, b1 (the starting node)
must be set to 1, b10 (the destination node) set to −1, and all the other bi’s must
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be zero, since they are transitory nodes. Most importantly, constraints 1 to 16
guarantee that the returned source/destination optimized path will be connected,
as it should be for the solution to represent an actual path traversed by the robot.

The constraint 17 (Lij ≤ xij ≤ Uij) limits the robot from travelling the same
edge more than once and less than zero. With trivial shortest path problems, each
edge can only be used once. The robot either takes the path (1) or does not (0).
Results such as 1/2 would not have any meaning.

9. Mechanics Of The Simplex Algorithm

Excellent textbooks exist that cover the simplex algorithm in detail [8,14]; as
a result, the mechanics will not be discussed here. LINDO, MATLAB and other
software can be used to solve Formulation A. In reality, a problem of this size would
be tedious to compute by hand. In order to perform the simplex algorithm, the
creation of more than 80 new variables, in addition to the 48 in Formulation A, are
required.

10. Avoiding An Edge Or A Node

We will now discuss two different mathematical procedures to address edge avoid-
ance. As stated earlier, a corridor could be blocked. The first method increases the
cost of the edge(s) to avoid. Remember that we are solving for an optimal minimum.
For instance (Figure 1), to avoid edge x3,4 we could increase its cost so much that the
algorithm will do everything it can to steer clear from it. In LP, this value is referred
as big M. M symbolizes a very large value. Here M could be the sum of all the costs,
216 = 2(2+7+1+3+4+3+4+1+5+9+7+2+3+7+9+4+8+5+6+6+5+1+4+2).
Thus, simply replacing the cost of 1 by 216 will force the algorithm to propose a
path without x3,4 in it.

The second method introduces new constraints to eliminate paths, or nodes.
As mentioned above, a node is defined by its in-points and out-points. Cutting a
node’s in-points should make it “disappear” from the network. Suppose that node
3 must be avoided. This can be attained by appending the two binding constraints
x2,3 = 0 and x7,3 = 0 to the initial formulation’s set of constraints (see Figure 2).
This will force the simplex algorithm to find a new shortest path that does not
include the edges x2,3 or x7,3 in the solution. Hence, node 3 will never be visited.

Keep in mind that adding constraints is more costly in computational power
than changing the costs. We remember from our discussion above that the average
empirical complexity of the Simplex Method is O(m2n). Adding a new constraint
increases m by 1. Changing the cost leaves m (and n) unchanged.

11. Forcing A Node

Since each node is defined by its in-points and out-points, it should be simple to
write constraints making sure that the robot goes “in” node n, then “out” node n, at
least once in the network. This should force a visit, and it will. However, it will not
necessarily guarantee a fully connected solution; subtours may appear. Consider
this scenario, where node 1 is the source, node 11 is the destination, and node 3 is
a node that the robot must visit in between (Refer to Figure 2). Appending the
following two constraints to Formulation A will secure a visit to node 3.
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Figure 2

3a) x2,3 + x7,3 ≥ 1

3b) x3,2 + x3,7 ≥ 1

3a) is saying: the robot must either borrow edge x2,3 or x7,3 at least once, not less.
The robot must absolutely “get in” node 3 by one of these two edges.

3b) is saying: the robot must either borrow edge x3,2 or x3,7 at least once, not less.
The robot must absolutely “get out” node 3 by one of these two edges.

With these additional constraints, the optimal path has length z = 15 minutes.
We can follow the path returned by the simplex algorithm in Figure 2 (red arrows).
We notice that the cost is 2x1,2+7x2,3+3x3,7+3x7,11 = 15 where the edge variables
x1,2 = x2,3 = x3,7 = x7,11 = 1 and all the other variables equal 0. We also notice
the absence of subtours, which is desirable.

Figure 3
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Now, consider Figure 3. Let us alter edges x1,2 and x2,1 by increasing their
costs by 1; all the rest of the formulation stays the same as in Figure 2. Note that
because of this, the algorithm returned two subtours, namely 3x3,7 + 3x7,3 and
3x1,5 + 1x5,6 + 2x6,10 + 4x10,11. Since all these variables equal 1, adding the cost
of the two subtours together gives an answer of z = 16 minutes. The reader should
verify that if the robot had kept the previous path taken in Figure 2 (with the new
altered cost for edges 3x1,2 and 3x2,1), the final cost would have been 16 as well;
3x1,2 +7x2,3 +3x3,7 +3x7,11 = 16. Why, then, did the algorithm choose a subtour?

This example shows that with this approach the algorithm is working exclusively
to minimize z, while guaranteeing only that the path begins at node 1 and ends
at node 10. Constraints 3a) and 3b) force the algorithm to find a path while
including two edges4 in the solution, but these constraints are not sufficient to
formulate the problem that we want to solve here. Simply put, these constraints
do not specify that the solution be fully connected. Hence, if subtours occur, the
algorithm will not care as long as z is at the lowest cost possible. Although this
approach is ineffectual here, we will see later that simple constraints like 3a) and
3b) will help us to solve the last round of our security run problem in Section
13. Also, it is worth mentioning that there exist a formulation called the Miller-
Tucker-Zemlin (MTZ) formulation [15], which adds J additional variables, J is
the total number of nodes, and K additional constraints, K is the total number
of edges, to the original formulation. This clever idea prevents TSP’s subtours,
however we will see in section 14 that this formulation does not return an optimal
solution for our particular problem. So, it seems that adding constraints to force
transitory nodes is not so simple. The problem gets trickier as we force more and
more transitory nodes, and we recall that this security run problem involves three
of them. Our MCNFP model, as it stands, cannot solve such complexity in one
run. In order to solve this problem at once, we would possibly have to re-think the
upper bound, the source, the destination constraints, and so on, which is not an
easy task. Nevertheless, nothing stops us from using the same algorithm repeatedly.
Besides, this is what we would have done if we had used Dijkstra’s shortest path
algorithm.

12. Solving A Complex Shortest Path Problem

We are now ready to attack the security run problem introduced in section 1.
As we recall, referring to Figure 1, we want to start from node 1 and finish at node
7, while visiting nodes 8, 11 and 13 in any order, all at the cheapest cost possible.
Thus, a shortest path must be introduced between each of the five nodes to be
visited in the sequence of n − 1 shortest paths5 . Moreover, we need to consider
all the possible sequences. We know that the sequences will always start at node
1 and finish at node 7. This narrows down the problem. For example, a possible
solution could be sequence 1, 11, 8, 13, 7. Another could be 1, 8, 11, 13, 7, and
so on. A total of twelve distinct edges exist, but some are redundant to compute;
for instance, node 8 to node 13 is equivalent in cost to node 13 to node 8. Thus,
to work out this problem correctly, we will only need to run the simplex algorithm
9 times and find the trivial shortest paths for the paths 1 → 8, 1 → 11, 1 → 13,
8 → 7, 8 ↔ 11, 8 ↔ 13, 11 ↔ 13, 11 → 7 and 13 → 7. Figure 4a helps us see

4Here, two edges incident to node 3 where indegree of node 3 is 1, and outdegree of node 3 is 1
5n is the number of nodes to visit including the source and destination nodes.
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a clear picture of the problem. The question marks in Figure 4a will be replaced
by the time (z ) returned by the algorithm for each trivial shortest path computed.
In other words, Figure 4a and Figure 4b are a high-level representation of Figure
1; they abstract the paths to be taken between the nodes, and only express the
node-to-node optimal costs. We see that Tableau 1 is the matrix representation of
Figure 4b.

Figure 4

Tableau 1 node 8 node 11 node 13 node 7
node 1 14 10 13 −
node 8 − 11 22 9

node 11 11 − 11 3
node 13 22 11 − 14

Also, we know that the simplex algorithm returns more than just the best cost;
it also returns the connected source/destination path associated with that cost.
Since we will need these paths later, we should store them in memory. If we
were using C++, we could define the class Path to hold a shortest path and its
corresponding cost. The instance variable Path::shortestPath could be an array
of EdgeVariable objects, and the instance variable Path::z could be a primitive
double. These Path objects could be organized in a Course class, having for data
member a two-dimensional array of Path instances. This matrix could be similar
to the ones shown in Tableau 1 and Tableau 2.

Using a formulation almost identical to Formulation A, we can now compute the
shortest path between node 1 and node 8 (using Figure 1). We notice that the only
difference between Formulation A and Formulation B below is the new destination
(node 8 instead of node 10). I have highlighted the two adjustments. Note that
nothing else has changed.



30 MARTIN TALBOT

1) x1,2 − x2,1 + x1,5 − x5,1 = 1
2) −x1,2 + x2,1 + x2,3 − x3,2 + x2,6 − x6,2 = 0
3) −x2,3 + x3,2 + x3,4 − x4,3 + x3,7 − x7,3 = 0
4) −x3,4 + x4,3 + x4,8 − x8,4 = 0
5) −x1,5 + x5,1 + x5,6 − x6,5 + x5,9 − x9,5 = 0
6) −x2,6 + x6,2 − x5,6 + x6,5 + x6,7 − x7,6 + x6,10 − x10,6 = 0
7) −x3,7 + x7,3 − x6,7 + x7,6 + x7,8 − x8,7 + x7,11 − x11,7 = 0
8) −x4,8 + x8,4 − x7,8 + x8,7 + x8,12 − x12,8 = −1
9) −x5,9 + x9,5 + x9,10 − x10,9 + x9,13 − x13,9 = 0

10) −x6,10 + x10,6 − x9,10 + x10,9 + x10,11 − x11,10 + x10,14 − x14,10 = 0
11) −x7,11 + x11,7 − x10,11 + x11,10 + x11,12 − x12,11 + x11,15 − x15,11 = 0
12) −x8,12 + x8,12 − x11,12 + x12,11 + x12,16 − x16,12 = 0
13) −x9,13 + x13,9 + x13,14 − x14,13 = 0
14) −x10,14 + x14,10 − x13,14 + x14,13 + x14,15 − x15,14 = 0
15) −x11,15 + x15,11 − x14,15 + x15,14 + x15,16 − x16,15 = 0
16) −x12,16 + x16,12 − x15,16 + x16,15 = 0

FORMULATION B (Same as formulation A, but with a new destination, node 8)

As we compute a shortest path, we instantiate a new Path object to store
the results. Twelve Path objects will be instantiated, but we will only run the
algorithm 9 times with the 9 distinct sources-destinations shown in Figure 4b.
Conveniently, only slight modifications to Formulation B will be carried out between
each run. Below, Tableau 2 holds all the paths returned by the algorithm after
completion. We verify that the path between node 8 and node 7 is x8,4 → x4,3 →
x3,7. Also, the cost for this path is 9 minutes (See Tableau 1).

Tableau 2 node 8 node 11 node 13 node 7
node 1 x1,2 → x2,3 → x4,8 x1,5 → x5,6 → x6,9 → x10,11 x1,5 → x5,6 → x6,10 → x10,14 → −

x14,13
node 8 − x8,4 → x4,3 → x3,7 → x7,11 x8,4 → x4,3 → x3,7 → x7,11 → x8,4 → x4,3 → x3,7

x11,15 → x15,14 → x14,13
node 11 x11,7 → x7,3 → x3,4 → x4,8 − x11,15 → x15,14 → x14,13 x11,7
node 13 x13,14 → x14,15 → x15,11 → x13,14 → x14,15 → x15,11 − x13,14 → x14,15 → x15,11 → x11,7

x11,7 → x7,3 → x3,4 → x4,8

Now that we have Tableau 2 stored in memory, we are one step away from being
finished. If we study Figure 4b, we see that the abstraction has eliminated the
complexity that we had in Figure 1. In Figure 4b, all the nodes must be visited once.
We recognize that this characteristic will allow us to solve Figure 4b as an authentic
TSP problem. We will use a very similar formulation to Formulation A and B in
order to solve for the final answer.

13. Building TSP for Figure 4b

To begin, we use the data stored in Tableau 1 to build the objective function.
Each cost expressed in Tableau 1 becomes the coefficient of its respective variable.
For example, the intersection of node 1 and node 8 is 14; this is translated as
14x1,8. Then, we build the constraints for each node. To do so, we must represent
in-points with negative signs and out-points with positive signs. We also must set
the source node’s right hand side to 1, the destination node’s right hand side to −1
and the others to 0. Then, we force every inner node (8, 11 and 13) to be visited
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exactly once. Although the forcing method did not work too well earlier, it will
work perfectly here. The reason is that here, every node must be visited without
exception; therefore the answer will be connected (with no subtours). Finally, 17)
and 18) remain the same.Formulation C is shown bellow.

minz = 14x1,8 + 10x1,11 + 13x1,13 + 11x8,11 +
22x8,13 + 9x8,7 + 11x11,8 + 11x11,13 +
3x11,7 + 22x13,8 + 11x13,11 + 14x13,7

SUBJECT TO:

1) x1,13 + x1,11 + x1,8 = 1 start at node 1
8) x8,13 − x13,8 + x8,11 − x11,8 − x1,8 + x8,7 = 0 pass thru node 8

11) x11,8 − x8,11 + x11,13 − x13,11 − x1,11 + x11,7 = 0 pass thru node 11
13) x13,11 − x11,13 + x13,8 − x8,13 − x1,13 + x13,7 = 0 pass thru node 13
7) −x8,7 − x11,7 − x13,7 = −1 end at node 7

20) x11,8 + x11,13 + x11,7 = 1 forcing node 11
21) x1,11 + x8,11 + x13,11 = 1 forcing node 11
22) x13,8 + x13,7 + x13,11 = 1 forcing node 13
23) x8,13 + x11,13 + x1,13 = 1 forcing node 13
24) x8,11 + x8,7 + x8,13 = 1 forcing node 8
25) x1,8 + x11,8 + x13,8 = 1 forcing node 8
26) x1,8 + x1,11 + x1,13 + x8,11 + x8,13 + x8,7 + forcing a visit to...
26) x11,8 + x11,13 + x11,7 + x13,8 + x13,11 + x13,7 = 4 ... exactly four nodes
17) ∀xij = (0, 1) upper bound 1, lower bound 0
18) ∀xij ≤ 1

FORMULATION C (TSP problem)

After computing Formulation C, we obtain z = 43. This represents the time in
minutes that it would take the robot to complete its security run in a best-case
scenario. It also returns the optimize path: x1,13 = x13,11 = x11,8 = x8,7 = 1
while all the other edge variables equal zero. This means that the robot will start
at node 1, go to node 13, then node 11, and finish at node 7. We now have
the abstract representation of the final answer; for the details, we will translate
this sequence in a format that is compatible to our initial problem in Figure 1.
To do so, we use the information that we have previously stored in memory, and
simply do the mapping. For example, using Tableau 2, we can expand the variable
x1,13 with the data found at the intersection of node 1 and node 13. This gives
x1,13 = x1,5 → x5,6 → x6,10 → x10,14 → x14,13. The translations are expressed in
Tableau 3.

Tableau 3
High Level Figure 1 Level

x1,13 x1,5 → x5,6 → x6,10 → x10,14 → x14,13

x13,11 x13,14 → x14,15 → x15,11

x11,8 x11,7 → x7,3 → x3,4 → x4,8

x8,7 x8,4 → x4,3 → x3,7 → x7,11

We then concatenate the expansions together (top to bottom), and obtain the fully
connected tour.
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x1,5 → x5,6 → x6,10 → x10,14 → x14,13 ⇒ x13,14 → x14,15 → x15,11 ⇒ x11,7 →
x7,3 → x3,4 → x4,8 ⇒ x8,4 → x4,3 → x3,7 → x7,11

Figure 5

The thick red arrows trace the tour in Figure 5. Note that we are passing by
node 7, which is our destination, but we cannot stop right away, since node 8 still
has to be visited. After returning from node 8, we come back and stop at node 7.
The reader should verify this answer.

14. Conclusion and Discussion

We saw that the simplex algorithm successfully solved our problem, but we ran
the algorithm 9 + 1 times. This solution involves overheads, roughly 9 + 1 +
1 additional function calls. The first 9 overhead calls build the formulations and
feed the simplex algorithm for each trivial shortest path computation. The tenth
call builds the TSP formulation. The eleventh call translates the final answer by
concatenating the shortest paths according to the sequence returned by the TSP.
These steps may be broken into further parts. Fortunately, Formulation B has
a similar mathematical structure for each trivial shortest path computation. If
sensitivity analysis is not used, so that we must compute from scratch each trivial
shortest path, then at most 4 right hand side values6 need to be modified between
each run. If used, sensitivity analysis7 requires more groundwork between each
run, but the algorithm will return the solution faster since there are fewer variables

6Formulation A,B: the bi in constraints 1–16
7Or sensitivity analysis revisited. The simplex method revisited is a systematic procedure

for implementing the steps of the simplex method in a smaller array, thus saving storage. This

method is especially useful when n is significantly larger than m. More about this:[8].
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(i.e., no artificial variables)8. Finally, the tenth call builds a composite formulation
problem.

Figure 6

Although Formulation C will always be built dynamically9 , the size of the net-
work is significantly reduced in comparison to the original problem (Figure 4a versus
Figure 1). Luckily, that fact works for us, and the impact of this call is acceptable.
Finally, the eleventh call does not have much significance, as it runs in linear time
and the size of the problem is minuscule.

Nevertheless, these overheads routines will cost extra computational time. For
example, as the number of mandatory transitory nodes increase (let this number
be x, 0 ≤ x ≤ 25), the amount of trivial shortest paths to compute roughly ap-
proximates the curve x1.83. Figure 6 plots two curves; the exact curve interpolated
in red, and the approximate curve expressed by a discrete set of blue x’s. We only
need to consider a maximum of 25 nodes, since it is unlikely that a robot will have
more than 25 transitory nodes to visit in a single mission during the scenarios that
we are considering.

Let us evaluate roughly what a mission with 25 mandatory transitory nodes
implies in computational cost. 251.83 is approximately10 362. So, about 362 shortest
paths, 1 TSP (1 source node + 25 transitory nodes + 1 destination node) and

8One may ask whether the “double” application of the simplex algorithm on the ‘smaller’

problem (the dual method followed by the simplex method) is quicker than the “single” application

of the simplex algorithm on the ‘larger’ problem (with artificial variables.)
9As opposed to Formulation A or B that can be built statically
10Note that the accurate value is 364, 362 is the x1.83 approximation
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(≈ 362 + 1 + 1) function calls (overheads), must be computed to obtain the final
answer. Even if we know that the ratio computation-time / travelling-time will be
very small, this estimate is impressive. That is why, when I started this project,
my initial goal was to find a model that could express a security run mission in a
unique formulation. I wanted to express the forced nodes, the broken edges and
the source/destination nodes within a single problem, and then run the simplex
algorithm only once in order to solve it. This would have saved overheads. I
realized after putting forth the effort that such a model was very difficult to design.
It is true that the MTZ formulation offers a run-once solution to traditional TSP
without subtour, but it also prevents connected subtours to arise. If you look at
Figure 6, you see that the solution presents two connected subtours. I’m referring
to the visit: node 14 to node 13, and node 13 to node 14 as the first connected
subtour, and the visit: node 7 to node 3 to node 4 to node 8, and node 8 to
node 4 to node 3 to node 7 as the second connected subtour. Because the method
presented in this article allows these connected subtours to exist, we receive for
final answer z = 43 minutes. If we had considered the MTZ formulation, we would
observe that the final solution presents no subtours (which is what we want) but
also that it has no connected subtours (which we may need), and because of this, z
would equal 57 minutes, this is 14 minutes more. I also wondered if neural networks
could not be another possible method to consider, but then what happens when an
edge becomes impractical? What kind of training set is required to guaranty the
same type of results we obtained here?

Finally, we discussed in section 1 that software’s design homogeneity was a mo-
tivation to implement the simplex algorithm. We must foresee that our robot will
certainly have additional problems in optimizing something other than shortest
path planning. Since the development of the simplex algorithm, many people have
contributed to the growth of LP by developing its mathematical theory, devising
efficient computational methods and codes, and exploring new algorithms and new
applications [8]. Nowadays, optimization is a concern in every field, and LP offers
solutions for a wide range of problems. We spend our life trying to optimize what
surrounds us: our incomes, our quality of life, minimizing our energy while maxi-
mizing our gains, etc. Consequently, an ”intelligent” AMR should not spin a wheel
or wink a sensor without first optimizing its action!
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