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TILING BY (k, n)-CROSSES

JOANNE CHARLEBOIS

Abstract. We investigate lattice tilings of n-space by (k,n)-crosses, estab-

lishing necessary and sufficient conditions for tilings with certain small values
of k. We give a necessary condition for tilings corresponding to nonsingular
splittings with general values of k. We also prove one case of a conjecture
made by Stein and Szabó in [4].

1. Introduction

A (k, n)-cross is an n-dimensional object consisting of one central n-dimensional
cube with an “arm” k cubes long attached to each of its 2n faces. See Figure 1 for
an example.

Figure 1. The (1, 2)-cross.

A lattice tiling of real n-space by (k, n)-crosses is a tiling in which each cube of a
(k, n)-cross is centered on an integer lattice point, and each lattice point is covered
by a cube from exactly one cross.

As shown in [4, p.62 and 75] the existence of a lattice tiling by (k, n)-crosses is
equivalent to the following condition:

Condition 1. Let Zg denote the additive cyclic group of order g where g = 2kn + 1,
and put F (k) = {±1,±2, . . . ,±k}. Then there exists a subset S of n elements of
Zg such that each nonzero element of Zg can be written uniquely in the form fs
with f ∈ F (k), s ∈ S, and 0 has no such factorization.
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If Condition 1 holds then we call S a splitting set of Zg by F (k). A splitting is
nonsingular if every prime divisor of g is > k, singular if any are ≤ k, and purely
singular if all prime divisors are ≤ k.

It is known that a group G is split nonsingularly by a set M if and only if Zp is
split by M for each prime dividing the order of G ([4, p.71]).

In a singular splitting it is known the group looks like

G ' Zm × Zp1 × Zp2 . . .× Zpn
,

for an integer m and primes pi (not necessarily distinct), with Zm split purely
singularly and each Zpi

split nonsingularly ([4, p.72 and 75]).
S. Szabó has proved that there are no lattice tilings by (k, n)-crosses when k ≥ n

for n > 1 ([4, p.63]). Condition 1 makes it clear that the (k, 1)-cross for any k
always tiles 1-dimensional space. (This is also true of the (k, 1)-semicross— see
Section 5.)

As an illustration, consider Z17, corresponding to 2kn = 16, so that k = 2 and
n = 4. Then F (2) = {1, 2, 15, 16}, and the set

S = {1, 3, 4, 5}

is such that
F (2)S = Z17 − {0}.

Thus the (2, 4)-cross lattice tiles 4-space. Note that S is not unique; other subsets
of Z17 − {0} could also be taken as splitting sets.

Throughout this paper, k and n will be integers denoting the arm length of
a cross and the dimension of space respectively, and p and q will always denote
primes. Other lowercase letters will denote integers or residue classes of integers.
As a splitting of Zp is a factorization of Z∗p = Zp −{0}, we shall frequently identify
the splitting with a factorization of Z∗p in the obvious manner.

2. Tilings with small values of k

In this section we shall completely characterize the values of n for which there
exist lattice tilings by (k, n)-crosses for some small values of k.

Lemma 1. Consider any splitting of Zp by a set F , with splitting set S. Then for
all m 6≡ 0, the intersection mF ∩ S has exactly one element.

Proof. For all s ∈ S, f ∈ F there is an m such that s = mf , since each f has a
multiplicative inverse, and hence s ∈ mF ∩ S. Thus

p− 1 ≤
p−1∑
m=1

|mF ∩ S|.

If for the same value of m we have two pairs s, f and s1, f1 satisfying

s = mf and s1 = mf1,

then f1s = f1mf = fmf1 = fs1. This is contrary to the uniqueness of the
factorization into an element of F and an element of S. Thus |mF ∩ S| ≤ 1.

Therefore by the inequality above, |mF ∩ S| = 1 for each m. 2

Equivalently for F = F (k),

|m{1, 2, . . . , k} ∩ ±S| = 1 for all m 6≡ 0,
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where ±S = S ∪ {−s : s ∈ S}, as this merely shifts the negative values from F (k)
into the splitting set. This is the form of the result we shall use most often.

Theorem 2. The (2, n)-cross lattice tiles n-space if and only if the order ord(4) of
4 in Z∗p is even for each p | 4n + 1.

Proof. We know that the existence of a lattice tiling by the (2, n)-cross is equivalent
to {±1,±2} splitting Z4n+1, from Condition 1. Since k = 2 and all p | 4n + 1 are
such that p > 2, any splitting of this group is nonsingular. Thus Z4n+1 is split if
and only if Z∗p factors for each p | 4n + 1.

First let p be any prime dividing 4n + 1 and suppose ord(4) is even, say 2m, in
Z∗p. We will show that this implies F (k) splits Z∗p.

Since −1 is the unique element of order 2 in Z∗p, and 4 has even order, −1 ∈ 〈4〉.
Thus 〈4〉 can be split by {±1}, say

〈4〉 = {1,−1}T.

The factor group Z∗p/〈4〉 has order ` where ` = (p − 1)/2m. If 2 ∈ 〈4〉 then
2 = 4i = 22i for some integer i. But then 2 (and hence 4) would have odd order
which is contrary to our hypothesis. Thus 2 6∈ 〈4〉. Hence 2〈4〉 is an element of
order 2 in Z∗p/〈4〉 and so ` is even.

Therefore half the cosets are of the form x〈4〉, the other half of the form 2x〈4〉
for a certain set of x’s. Let U be a set of coset representatives for 〈2〉 in Z∗p and
note that 〈2〉 = {1, 2}〈4〉. Then

Z∗p = {1, 2}〈4〉U
= {±1,±2}TU

is a factorization for Z∗p.
Now suppose S is a splitting set for Zp by F (2). We shall show that ord(4) must

be even.
We may assume 1 ∈ S ([4, p. 68]) which implies that ±2 6∈ ±S due to Lemma 1.
Then, again from Lemma 1, |2{1, 2}∩±S| = 1 tells us that we must have 4 ∈ ±S.

By induction on x, 4x ∈ ±S for all x ≥ 0. Thus 〈4〉 ⊆ ±S.
Since ±2 /∈ ±S from above, this shows that ±2 /∈ 〈4〉.
Now Z∗p is cyclic and so Z∗p/〈4〉 is cyclic. Since 2〈4〉 and −2〈4〉 both have order

2 in the factor group, they must be equal. Hence 2〈4〉 = −2〈4〉 and so −1 ∈ 〈4〉.
Therefore |〈4〉| is even, that is, ord(4) is even.2

An equivalent formulation of Theorem 2 is that there is a splitting if and only if
±2 /∈ 〈4〉 in Z∗p for each p | 4n + 1.

See Table 1 for the dimensions tiled by the (2, n)-cross with n ≤ 50.

For k = 3, there is also no possibility of singular splittings. If there was a singular
splitting, the order of the group would be divisible by p = 2 or p = 3. These are
both impossible since the order of the group is 6n+1 for some n. Thus all splittings
for k = 3 are nonsingular, and we characterize them in the following theorem.

Theorem 3. The (3, n)-cross lattice tiles n-space if and only if ±2 /∈ 〈6, 8〉 in Z∗p
for each p | 6n + 1.

Proof. First note that ±2 /∈ 〈6, 8〉 if and only if ±3 /∈ 〈6, 8〉 since 6(±3−1) = ±2
and 6(±2−1) = ±3.



4 JOANNE CHARLEBOIS

n 2kn + 1
1 5
3 13
4 17
6 25 = 52

7 29
9 37
10 41
13 53
15 61
16 65 = 5 · 13
21 85 = 5 · 17
24 97
25 101
27 109
28 113
31 125 = 53

34 137
36 145 = 5 · 29
37 149
39 157
42 169 = 132

43 173
45 181
46 185 = 5 · 37
48 193
49 197

Table 1. The dimensions n lattice tiled by the (2, n)-cross for n ≤ 50

We will now show that if there is a splitting, then 〈6, 8〉 must be a subset of the
splitting set ±S, assuming 1 ∈ ±S.

As before, we may assume without loss of generality that 1 ∈ ±S. Suppose
r ∈ ±S. If 6r /∈ ±S then its factorization into an element of {1, 2, 3} and an
element of ±S is one of 6r = 2x or 6r = 3x for some x ∈ ±S. Then we have
x = 3r or x = 2r in ±S, respectively, which contradicts |r{1, 2, 3} ∩ ±S| = 1 from
Lemma 1. Thus we have 6r ∈ ±S.

We now know r ∈ ±S implies 6r ∈ ±S and we know

|2r{1, 2, 3} ∩ ±S| = 1,

which implies that 4r /∈ ±S. Thus if 8r /∈ ±S then we get 12r ∈ ±S from

|{4r, 8r, 12r} ∩ ±S| = 1.

But, as we have 6r ∈ ±S, this contradicts

|{6r, 12r, 18r} ∩ ±S| = 1.

Therefore we must have 8r ∈ ±S.
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Now for any r ∈ ±S, we have 6r, 8r ∈ ±S, and we also have 1 ∈ ±S, which
implies that

〈6, 8〉 ⊆ ±S.

Thus we need ±2,±3 /∈ 〈6, 8〉 since otherwise this would contradict

|{1, 2, 3} ∩ ±S| = 1.

This proves the necessity of the theorem’s statement.
To show that it is sufficient, note that the cosets of 〈6, 8〉 partition Z∗p. Now we

show that x〈6, 8〉, 2x〈6, 8〉, 3x〈6, 8〉 are distinct cosets for any x.
If there is a splitting, clearly

x〈6, 8〉 6= 2x〈6, 8〉 and x〈6, 8〉 6= 3x〈6, 8〉
as otherwise we would get 2 or 3 ∈ 〈6, 8〉, that is, 2 or 3 ∈ ±S. If 2x〈6, 8〉 = 3x〈6, 8〉
then 2·3−1 ∈ 〈6, 8〉, hence 6·2·3−1 = 4 ∈ 〈6, 8〉, which then gives 8·4−1 = 2 ∈ 〈6, 8〉,
a contradiction. Thus the cosets as above are distinct.

Since 2 /∈ 〈6, 8〉, the coset 2〈6, 8〉 has order 3 in Z∗p/〈6, 8〉 and so

3 | [ Z∗p :〈6, 8〉 ].
Therefore the number of distinct cosets must be a multiple of three. In fact the
subgroup of Z∗p/〈6, 8〉 generated by 2〈6, 8〉 is {〈6, 8〉, 2〈6, 8〉, 3〈6, 8〉} since 22〈6, 8〉 =
3〈6, 8〉. Thus 〈2, 6, 8〉 = {1, 2, 3}〈6, 8〉. This means that the set of cosets can be
factored by {1, 2, 3}, say

Z∗p/〈6, 8〉 = {1, 2, 3}T
where T is a set of coset representatives for 〈2, 6, 8〉 in Z∗p.

If −1 ∈ 〈6, 8〉 then 〈6, 8〉 is factored by {±1}. Otherwise, x〈6, 8〉 and −x〈6, 8〉
are distinct for each x and so the set of all cosets can be factored by {±1}. Either
way as the cosets of 〈6, 8〉 factor Z∗p by {1, 2, 3} we get

Z∗p = {±1}{1, 2, 3}T1 = F (3)T1

as a factorization, where T1 is a union of cosets of 〈6, 8〉. 2

See Table 2 for the dimensions tiled by the (3, n)-cross with n ≤ 200.

When k = 4, the only purely singular splitting is of Z9, as proved by Hickerson
in [2]. Therefore we could have a mixed singular splitting for k = 4 of a group
G ' Z9 × Zp1 × Zp2 . . . × Zpn , in view of the result cited in Section 1.

Theorem 4. The (4, n)-cross lattice tiles n-space if and only if:
(1) ±4 /∈ 〈6, 16〉 in Z∗p for each p | 8n + 1, p 6= 3;
(2) if 3 | 8n + 1, then 9 | 8n + 1 and 27 6 | 8n + 1.

Note that ±4 /∈ 〈6, 16〉 if and only if ±2,±3,±4 /∈ 〈6, 16〉.
The proof is omitted as it is similar to the proof of Theorem 3. The second

condition for p = 3 takes into account a possible singular part to a splitting as Z9

can be split by F (4).
See Table 3 for the dimensions tiled by the (4, n)-cross with n ≤ 500.

For a purely singular splitting with k = 5, the order of the group would have
prime factors p = 2, p = 3, or p = 5. We cannot have p = 2 or p = 5 as the
order of the group is 10n + 1 for some n. Thus the group has order 3x for some x.
Then all elements of the group that are relatively prime to 3 are those of the form
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n 2kn + 1
1 7
6 37
8 49 = 72

23 139
27 163
30 181
40 241
43 259 = 7 · 37
52 313
56 337
57 343 = 73

58 349
63 379
68 409
70 421
90 541
95 571
101 607
105 631
125 751
143 859
146 877
153 919
156 937
162 973 = 7 · 139
172 1033
181 1087
187 1123
190 1141 = 7 · 163
195 1171

Table 2. The dimensions n lattice tiled by the (3, n)-cross for n ≤ 200

n 2kn + 1
1 9
12 97
109 873 = 9 · 97
234 1873
270 2161
432 3457

Table 3. The dimensions n lattice tiled by the (4, n)-cross for n ≤ 500
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n 2kn + 1
1 11
12 121 = 112

42 421
70 701
133 1331 = 113

286 2861
393 3931
463 4631 = 11 · 421

Table 4. The dimensions n lattice tiled by the (5, n)-cross for n ≤ 500

±fs, f ∈ {1, 2, 4, 5}, s ∈ S, s relatively prime to 3. There are ϕ(3x) = 2 · 3x−1

such elements in the group. But

|{1, 2, 4, 5}| = 4 6 | 2 · 3x−1

so there cannot be such a splitting. Therefore all splittings for k = 5 are nonsingu-
lar, given by the conditions in the following theorem.

Theorem 5. The (5, n)-cross lattice tiles n-space, for n > 1, if and only if ±2,±5,±5·
2−1,±5 · 3−1,±5 · 4−1 /∈ 〈6, 32〉 in Z∗p for each p | 10n + 1.

Note that ±2 /∈ 〈6, 32〉 if and only if ±2,±3,±4 /∈ 〈6, 32〉.
The proof is omitted as it is also similar to the proof of Theorem 3. The extra

conditions are necessary because otherwise the cosets

2〈6, 32〉, 3〈6, 32〉, 4〈6, 32〉, 5〈6, 32〉

may not all be distinct. For example, when p = 101 we have 10 ∈ 〈6, 32〉 so that
3〈6, 32〉 = 5〈6, 32〉 and there is no splitting, although ±2,±3,±4,±5 /∈ 〈6, 32〉.

We require n > 1 in the theorem because when n = 1 we clearly have a splitting
of Z11 by F (k), but 〈6, 32〉 = Z11.

See Table 4 for the dimensions tiled by the (5, n)-cross with n ≤ 500.

3. A necessary condition for nonsingular splittings

We shall now give a necessary condition for a group of prime order p to be split
by F (k). As we show below, this condition is not sufficient, but it does appear to
be a somewhat strong condition.

First, we introduce the notation for this section. Let g be a generator of the
cyclic group Z∗p and suppose that

F (k) = {gi} ∪ {gi(p−1)/2}

with i ∈ I, where I is a subset of {1, 2, . . . , p− 1}. Define

a0(x) = (1 + x(p−1)/2),

a(x) =
∑
i∈I

xi,

and f(x) = (xp−1 − 1)/(x− 1) in Z[x].
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Lemma 6. F (k) splits Z∗p if and only if there exist b(x), c(x) ∈ Z[x] such that
a0(x)a(x)b(x) = f(x)c(x) where all nonzero coefficients of b(x) equal 1 and c(1) = 1.

Proof. Suppose there is a splitting Z∗p = F (k)S. Let S = {gj : j ∈ J} and define
b(x) =

∑
j∈J xj . For all i ∈ I and j ∈ J write

i + j = m(i, j) + n(i, j)(p− 1)

with 0 ≤ m(i, j) < p− 1 and n(i, j) = 0 or 1.
Then the values of m(i, j) run over the interval 0 to p− 2, and so

a0(x)a(x)b(x) = f(x) + (xp−1 − 1)
∑

xm(i,j)

where the sum is over all pairs (i, j) with n(i, j) = 1.
Thus a0(x)a(x)b(x) = f(x)c(x) where c(x) = 1 + (x− 1)

∑
xm(i,j).

Conversely, suppose
a0(x)a(x)b(x) = f(x)c(x)

where b(x) has the form
∑

j∈J xj for some subset J of {0, 1, . . . , p− 2} and c(x) ∈
Z[x] has c(1) = 1. Then

c(x) = 1 + (x− 1)c0(x)
for some c0(x) ∈ Z[x] and so

f(x)c(x) = f(x) + (xp−1 − 1)c0(x).

Thus in the product F (k)S each power gi, 0 ≤ i < p− 1, occurs an odd number of
times, hence at least once.

Therefore, as gp−1 = 1, a0(x)a(x)b(x) = f(x)c(x) implies that Z∗p factors in the
form Z∗p = F (k){gj : j ∈ J}. 2

The next lemma uses information about the cyclotomic polynomials Φd(x) (see,
for example, [1, Section 13.6]).

Lemma 7. For qd | p− 1, the following are equivalent:
(1) the cyclotomic polynomial Φqd(x) divides a(x);
(2) a(gh) = 0 in Z∗p for all gh with h of the form t(p− 1)/qd, where 1 ≤ t ≤ qd

and gcd(t, qd) = 1.

Proof. Since Φqd(x) = (xqd − 1)/(xqd−1 − 1), the roots of Φqd(x) in Z∗p are just the
elements ω such that ωqd

= 1 but ωqd−1 6= 1 and hence are the primitive qd-th roots
of unity (these roots exist in Z∗p since qd | p− 1). Thus Φqd(x) | a(x) if and only if
a(ω) = 0 for each primitive qd-th root ω of 1. The primitive qd-th roots are of the
form ω = gh, where h = t(p− 1)/qd, for t satisfying 1 ≤ t ≤ qd and gcd(t, qd) = 1.
2

Theorem 8. Suppose Z∗p is split nonsingularly by F (k), and let q be a prime
dividing k. If qe is the highest power of q dividing k, and qe1 is the highest power
of q dividing p− 1, then for e values of d, with 1 ≤ d ≤ e1, we have∑

f∈F (k)

fh ≡ 0

for each h of the form t(p− 1)/qd where 1 ≤ t ≤ qd and gcd(t, qd) = 1.
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Proof. Over Z[x] the polynomial f(x) is the product of the irreducible factors Φ`(x),
` | p− 1, ` > 1. Now Φ`(1) = q if ` is a positive power of a prime q and Φ`(1) = 1
otherwise. Thus if h(x) is a monic irreducible factor of a0(x)a(x)b(x) = f(x)c(x)
and h(1) 6= 1, then h(x) = Φ`(x) for some prime power ` > 1. Since a(1) = k, this
shows that for each prime q | k there are exactly e values of ` > 1, where ` is a
power of q, such that Φ`(x) divides a(x) (where 1 < ` ≤ qe1). Applying Lemmas 6
and 7 gives the result. 2

Unfortunately the converse of this theorem does not hold. For example, take
p = 409, k = 4. In this case we have

1 + 2(p−1)/4 + 3(p−1)/4 + 4(p−1)/4 ≡ 0(mod p) and

1 + 2(p−1)/8 + 3(p−1)/8 + 4(p−1)/8 ≡ 0(mod p),

so that there are appropriate cyclotomic polynomials dividing a(x) by Lemma 7.
But we also have, in Z∗p, 1626 ≡ −4(mod p), that is −4 ∈ 〈6, 16〉. As we have shown
in Theorem 4, this means that there cannot be a splitting.

4. A conjecture of Stein and Szabó

In their book ([4, p.61]), S.K. Stein and S. Szabó state as an open problem the
conjecture:

Stein/Szabó Conjecture:: If n ≥ 4 and there is a lattice tiling by (k, n)-
crosses then k < n/2.

It is easily shown that there are lattice tilings by (2, 4)-crosses and (3, 6)-crosses,
but presumably these are the only exceptions where k = n/2.

As we shall explain below, this conjecture breaks up into two cases, and we settle
the conjecture for one of the cases and give a necessary condition for the other case.

For the rest of this section, we assume that 2k ≥ n.
If we have a nonsingular splitting of Zg where g = 2kn + 1 is not prime then

there is a prime p dividing g with

p ≤ √
g ≤

√
4k2 + 1,

so p ≤ 2k − 1 by hypothesis on n. A group G is split nonsingularly by F (k) if
and only if Zp is split by F (k) for each prime dividing the order of G, as noted
in Section 1. But here the order of Zp is at most 2k − 1 so it cannot be split by
F (k) which has 2k elements. Thus if we have a nonsingular splitting of Zg, then
g = 2kn + 1 must be prime.

Using Theorem 8, computations show that there are no nonsingular splittings of
Z2kn+1 with 2kn+1 prime and 2k ≥ n, for 4 ≤ k ≤ 200; however we have not been
able to settle the nonsingular case in general.

Theorem 8 implies that for prime k, because k does not divide n when k > n/2,
a necessary condition for a splitting is that

k∑
x=1

x2nt ≡ 0(mod p),

for 1 ≤ t < k (where p = 2kn + 1). In terms of the Bernoulli polynomials Bm(x),
this requires

(1/(2nt + 1))[B2nt+1(k + 1)−B2nt+1(1)] ≡ 0(mod p) ([3, p. 93]),
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but we do not know of any results refuting the possibility of such a congruence. For
composite k, there is more than one such congruence to check.

We now observe that if Zg has a singular splitting, then this splitting is purely
singular. Indeed, otherwise we would have a mixed singular splitting where G '
Zm × Zp, with Zm split purely singularly and Zp split nonsingularly, from the
results cited in Section 1. But, as we noted above the order of a group split by
F (k) must be divisible by 2k, in this case 2k | m− 1 and 2k | p− 1, which leads to
the contradiction (2k)2 ≤ g = 2kn + 1. Thus any singular splitting of Zg is purely
singular, and so the problem is reduced to the nonsingular and the purely singular
cases.

The following shows that the Stein/Szabó Conjecture is true in the purely sin-
gular case, that is, when each prime p dividing 2kn + 1 satisfies p ≤ k.

Theorem 9. If k ≥ n/2 then there is no purely singular splitting of Z2kn+1 by
F (k).

Proof. Fix a prime p dividing g = 2kn+1, and let sp be the number of elements in
the splitting set S with order divisible by the largest power of p dividing g. Write
k = pbk/pc + rp where the remainder rp satisfies 1 ≤ rp ≤ p − 1 since p does not
divide k.

Then
g − 1 = 2k(n− sp) + 2ksp

is the number of elements in Z2kn+1 with order greater than 1, and

g/p− 1 = 2k(n− sp) + 2bk/pcsp

is the number of elements with order greater than 1 but dividing g/p.
The two equations give:

p− 1 = −2k(n− sp)(p− 1) + 2sprp

< −2k(n− sp)(p− 1) + 2(p− 1)sp ,

which yields sp ≥ (kn + 1)/(k + 1)
> n− 2 since n ≤ 2k.

Therefore we have sp ≥ n− 1. If sp = n then

g/p− 1 = 2bk/pcn

from above and so rp = (p−1)/2n. But, because n > k > p−1, 2n does not divide
p− 1 and so we conclude that sp 6= n. Thus sp = n− 1. Moreover,

(p− 1)(2k + 1) = 2rp(n− 1).

This last equality shows that if gcd(2k + 1, n− 1) = 1 then

2k + 1 | rp and so 2k + 1 ≤ rp < p ≤ k

which is not possible. Thus gcd(2k + 1, n − 1) > 1. Let q be a prime such that q
divides both n− 1 and 2k + 1.

Then as n ≡ 1(mod q) and 2k ≡ (−1)(mod q), we get g = 2kn + 1 ≡ 0(mod q)
and so we have q | g. Thus we can take p = q in the above calculations.

Since 2k + 1 ≡ 0(mod q), we have k ≡ (q − 1)/2(mod q), and hence

rq = (q − 1)/2.
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Then we have (q − 1)(2k + 1) = 2(n− 1)rq

= 2(n− 1)(q − 1)/2

which gives 2k + 1 = n− 1, that is n = 2k + 2 contrary to n ≤ 2k. This proves the
theorem. 2

5. Notes on semicrosses and on purely singular splittings

The set S(k) = {1, 2, . . . , k} corresponds to tilings by semicrosses, in which the
k unit cubes extend out from only one side of the central cube. See Figure 2 for an
example.

Figure 2. The (2, 2)-semicross.

It is known that a tiling by the (k, n)-cross implies a tiling by the (k, 2n)-
semicross ([4, p. 63]). Thus the theorems in Section 2 give sufficient, but not
necessary, conditions for lattice tilings by (k, 2n)-semicrosses with k = 2, 3, 4, 5.
For example, when k = 2, if ord(4) is even in each Z∗p for all p | 4n + 1, then there
is a tiling by the (2, 2n)-semicross.

Hickerson has shown (see [4, p.76]) that the only purely singular splittings by
S(k), for k ≤ 3000, are of Zk+1 and Z2k+1 (corresponding to n = 1 and n = 2
respectively) when k +1 and 2k +1 are composite. This implies that, for k ≤ 3000,
the only purely singular splittings by F (k) are of Z2k+1 when 2k+1 is composite. It
is not known whether Hickerson’s finding is true for general k. If it is, this implies
that the only purely singular splittings by F (k) are in dimension n = 1.
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