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MAXIMUM MATCHINGS IN COMPLETE MULTIPARTITE
GRAPHS

DAVID SITTON

Abstract. How many edges can there be in a maximum matching in a com-
plete multipartite graph? Several cases where the answer is known are dis-
cussed, and then a new formula is given which answers this question.

1. Introduction

Suppose we have a company that has several departments, and for some project,
we want the employees from different departments working in pairs. If no employee
works in more than one department, then how many simultaneous pairs of employ-
ees can we have with no employee in more than one pair? That is, what is the
maximum number of pairs? When can all employees be paired?

We will treat this as a problem in graph theory. We will see that employees
correspond to vertices, and pairs of employees correspond to edges. Similarly, de-
partments relate to vertex partition sets in a multipartite graph that represents
the company. Furthermore, we will consider the complete multipartite graph be-
cause we allow any pair of employees in different departments to be paired together.
Finally, we will see that vertex disjoint edges correspond to disjoint pairs of em-
ployees. Thus our goal is to find a matching, that is, a set of vertex disjoint edges,
of largest size. We will use standard notation and definitions from graph theory [1]
to look at this problem.

In essence, in this paper, we look at how many edges there can be in a maximum
matching in a complete multipartite graph. We first look at several cases in which
the answer is known. Except for results which are cited, all of the theorems are
original. Finally, in our conclusion, we provide a new theorem which solves this
problem with a simple formula.

2. Basic Definitions

First, we define a graph to be a finite set of objects, called vertices, together
with a collection of unordered pairs of vertices, called edges. Pictorially, edges
can be viewed as line segments connecting the vertices. (See Figure 1.) A graph
is multipartite if the set of vertices in the graph can be divided into non-empty
subsets, called parts, such that no two vertices in the same part have an edge
connecting them. (See Figure 2.) Furthermore, a complete multipartite graph is a
multipartite graph such that any two vertices that are not in the same part have
an edge connecting them. We will denote a complete multipartite graph with n
parts by Km1,m2,...,mn where mi is the number of vertices in the ith part of the
graph. Because it will be helpful later, we will assume without loss of generality
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that 1 ≤ m1 ≤ m2 ≤ · · · ≤ mn. Furthermore, we will call the nth part the
maximum part. An example of a complete multipartite graph would be K2,2,3.
(See Figure 3.)

Figure 1 – A Graph.

Figure 2 – A 3-Partite Graph.

Figure 3 – A Complete 3-Partite Graph.

Two edges are said to be vertex disjoint if they do not have a vertex in common.
We call a set of pairwise vertex disjoint edges a matching. Clearly, every edge
connects two vertices, and every vertex in a matching lies on exactly one edge by
the definition of vertex disjoint edges. (See Figure 4.) So if E equals the total
number of edges in a matching, and if V equals the total number of vertices in the
same matching, then V = 2E. A matching is called maximum if there is no other
matching containing more edges. In Figure 5, the thick lines represent a maximum
matching in the graph with vertices A, B, C, and D. (See Figure 5.)
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Figure 4 – Vertex Disjoint Edges.
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Figure 5 – A Matching.

3. A Useful Lemma

We will let M be the number of edges in, i.e. the size of, a maximum matching.
Notice then, that 2M is the largest number of vertices used by any matching of
a given graph. Since no vertex can be used more than once in a matching, the
number of vertices used in a maximum matching must be less than or equal to the
total number of vertices in the graph. [1]

Lemma 1. Let T be the total number of vertices in a graph and let M be the
number of edges in a maximum matching of the graph. Then M ≤ �T/2�, where
�x� is the greatest integer less than or equal to x. That is, the number of edges in a
maximum matching of the graph is less than or equal to one half the total number
of vertices in the graph.

Observe that if a matching uses all vertices, or all but one vertex, then no larger
matching can be produced, so the matching must be maximal. So when looking for
maximum matchings, we will try to find matchings that use all but possibly one
vertex.

4. Matchings in Complete Graphs

A complete graph is a graph for which every two vertices in the vertex set have
an edge connecting them. Thus a complete graph has all possible edges. Note that
a complete graph is just a complete multipartite graph for which every part consists
of a single vertex. What is M in a complete graph?
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To find a maximum matching, take two vertices of the graph and connect them,
then repeat this process for the remaining vertices until either one or no vertices
remain. Clearly this produces a maximum matching, because a larger matching
would require more vertices than are in the graph. Hence, if there is an even
number of vertices in the graph, M = T/2 (no unused vertices), and if there is
an odd number of vertices in the graph, then only T − 1 vertices are used, so
M = (T − 1)/2. Thus M = �T/2�.

5. Matchings for Complete Multipartite Graphs

Now consider a maximum matching in a complete multipartite graph with T
total vertices and an arbitrary number of parts. (See Figure 6.) The size of
the maximum matching has the same upper bound of �T/2�. But, can a maxi-
mum matching always use all but at most one vertex? To answer this, consider
the case of K2,3,7. Since no two vertices in the part with 7 vertices can be con-
nected by an edge, all vertices in a maximum matching from the part with 7 ver-
tices must be connected to vertices from the other two parts. However, there
are only 5 such vertices, so at least 2 of the vertices from the part with 7 ver-
tices can not be used in any maximum matching. Clearly, M ≤ (T − 2)/2 =
T/2 − 1 < �T/2�, and hence some method of calculating M other than searching
for a matching using all but possibly one of the vertices is necessary. (See Figure 7.)

m m

m m

1 2

n 3

Figure 6 – A Complete Multipartite Graph Km1,m2,...,mn.

dav7.eps

Figure 7 – A Maximum Matching for the Trivial Case K2,3,7.

As we saw in the previous section, the difficulty with finding M for the complete
multipartite graph K2,3,7 was that the maximum part had more vertices than all
of the other parts combined. Clearly, whenever the maximum part in a complete
multipartite graph has more vertices than all the other parts combined, a maximum
matching that uses all vertices cannot be found. Note from the example, K2,3,7,
that the least number of vertices are left unused when all edges in the matching
use vertices in the maximum part. Thus, for any complete multipartite graph with
more vertices in one part than in all the other parts combined, a maximummatching
is obtained by connecting all vertices not in the maximum part to vertices in the
maximum part. This matching uses all vertices not in the maximum part, and
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each of its edges is connected to a vertex in the largest part. Thus, any maximum
matching in this graph has as many edges as the total number of vertices not in
the maximum part. This case will be called the trivial case.

Theorem 1. Let Km1,m2,...,mn be a complete multipartite graph with mi vertices
in the ith part, labeled so that m1 ≤ m2 ≤ ··· ≤ mn. If mn ≥ m1+m2+ · · ·+mn−1,
then:

(i) the number of edges in any maximum matching is M = m1+m2+ · · ·+mn−1;
(ii) a maximum matching is obtained by connecting all vertices in the parts
with m1, m2, · · ·, mn−1 vertices to vertices in the part with mn vertices.

Now consider the 2-partite (bipartite) case, the complete bipartite graph Km,n,
where m ≤ n. This satisfies the trivial case with M = m. (See Figure 8.) [1]

Figure 8 – A Maximum Matching for the Bipartite Case Km,n.

6. The Nontrivial Complete Multipartite Graph:

6.1. The 3-Partite Case. Consider the nontrivial case, the case in which the
maximum part has fewer vertices than the smaller parts combined. Note that a
matching using all vertices, except possibly one, must be maximal. So we will try
to find an algorithm to produce such a matching if possible and if it exists, we know
that M = �T/2�.

First, consider the nontrivial, complete multipartite graph with 3 parts, Kl,m,n,
with l ≤ m ≤ n and n < l + m. We assume first that there are an even number
of vertices in this graph. For convenience, let parts I, II, and III be the parts with
l, m, and n vertices, respectively. Now, to produce a matching in the graph we
choose m − l vertex disjoint edges between parts II and III. (See Figure 9.)

Now parts I and II both have l vertices available and part III has n− (m− l) ver-
tices available. The subgraph containing only the unmatched vertices, Kl,l,n−(m−l),
is nontrivial because n − (m − l) < l + m − (m − l) = l + l = 2l. Note that since
n− (m− l) = n+m+ l− 2m, we see that part III has an even number of vertices.
So we choose a = 1

2 (n− (m − l)) edges between parts I and III; and we choose the
same number of edges between parts II and III. (See Figure 10.)



MAXIMUM MATCHINGS IN COMPLETE MULTIPARTITE GRAPHS 11

ml

n

m-l   edges

I II

III

Figure 9 – Construction of a Maximum Matching for a 3-Partite Graph.

ml

n

m-l   edges

I II

III

edgesa

edgesa

Figure 10 – Constructing a Maximum Matching Step Two: a = [n − (m − l)]/2.

Now m − l edges were put in the matching by the first selection procedure,
and n − (m − l) edges put in the matching by the second selection procedure.
Furthermore, we now have a complete bipartite graph consisting of all available
vertices from the original graph that are not yet used in the matching. Furthermore,
both parts I and II in the bipartite graph of available vertices and edges have the
same number of vertices, k = l − 1

2 (n − (m − l)) vertices. So we choose k edges
between parts I and II as we did in the trivial case. Now, all vertices in the graph
have been used in the constructed matching, so M = T/2 = (l + m + n)/2. (See
Figure 11)
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Figure 11 – Constructing a Maximum Matching: Step Three.

Now consider the case when l+m+n is odd. We know n < m+l so n ≤ m+(l−1).
So we choose one vertex from part I to be excluded from the matching. We have a
nontrivial complete 3-partite graph with an even number of vertices if l > 1, and
a complete bipartite graph if l = 1. Both of these cases are discussed above. If
n = m+(l− 1), then we have the trivial case. Otherwise, a maximum matching in
a complete 3-partite graph uses all but at most one vertex. Therefore, M = �T/2�.
Theorem 2. If Kl,m,n is a nontrivial complete 3-partite graph with l ≤ m ≤ n
(and n < l + m), then

(i) M = �T/2�; and
(ii) a maximum matching is obtained by the following algorithm:

Step 1: If T is odd, then mark off one vertex in the part with l vertices to be
excluded. Let l′ = l if T is even and l′ = l − 1 if T is odd.

Step 2: Connect 1
2 (l

′+m−n) vertices from the part with m vertices to the part
with l′ vertices.

Step 3: Connect all remaining vertices in the parts with m and l′ vertices to the
n vertices in the remaining part.

We now have produced a maximum matching for any nontrivial complete 3-
partite graph. We note that for any maximum matching in a nontrivial, 3-partite
graph with an odd number of vertices, the excluded vertex can come from any
of the three parts. Furthermore, if there are an even number of vertices, the same
number of edges must be used between any two parts in the graph for any maximum
matching chosen, because by connecting vertices between the smaller parts, we get a
trivial 3–partite subgraph with the maximum part having exactly the same number
of vertices as the other two parts combined, expressed as Km,m.

6.2. Four or More Parts. Now we would like to use the theorem in the previous
section to find maximum matchings for all nontrivial, multipartite graphs. We will
use the principle of mathematical induction to find such a matching.

Observe that Km,m always has a maximum matching of size m using all vertices.
Furthermore, as we saw above, the graph Kl,m,n with an even number of vertices
has a maximum matching of size T/2 using all vertices.

Suppose for a given n ≥ 3, we know that for any nontrivial, complete multipartite
graph with n or n−1 parts, Km1,m2,...,mn−1 or Km1,m2,...,mn , the size of a maximum
matching is M = �T/2�. Now consider an arbitrary nontrivial multipartite graph
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with n + 1 parts, Km1,m2,...,mn,mn+1 with m1 ≤ m2 ≤ · · · ≤ mn ≤ mn+1. (See
Figure 12.)

m m

m m

1 2

nn+1

Figure 12 – A Complete Multipartite Graph with n + 1 Parts.

Since this graph is nontrivial, mn+1 < m1 + m2 + · · · + mn−1 + mn. Suppose
there are even number of vertices in this graph.

Choose m1 vertex disjoint edges between the parts of size m1 and mn+1. (See
Figure 13.)
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Figure 13 – Constructing a Maximum Matching: Step One.

The remaining vertices correspond to the section of the complete multipartite
graph with n parts: K ′ = Km2,m3,...,mn,mn+1−m1 . This graph has either n or
n − 1 parts. Since n + 1 ≥ 4, there must be parts with m2 and m3 vertices, and
with mn+1 − m1 vertices if m1 �= mn+1, in this graph. It is then sufficient to
show that all remaining vertices can be used in the matching. Furthermore, to do
this it is only necessary to show that the K ′ is nontrivial since it has n or n − 1
parts. But since {mi}n+1

i=1 is monotonic nondecreasing, the maximum part has either
mn+1 − m1 or mn vertices. And, we know that mn+1 < m1 + m2 + m3+ · · ·+mn

subtracting m1 from both sides yields mn+1 − m1 < m2 + m3 + · · · + mn. So if
the maximum part has mn+1 − m1 vertices, then K ′ is nontrivial. Suppose mn

is the largest component. Then there are two cases: (i) mn+1 = m1, in which
case we are left with a multipartite graph with n − 1 parts; and (ii) mn+1 �= m1.
Consider the first case, mn+1 = m1. Then K ′ is has n − 1 parts, and mn+1 =
m1, so m1 = m2 = · · · = mn = mn+1. Hence, the maximum part has mn
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vertices and mn = m2 < m2 + m3 + · · · + mn so K ′ is nontrivial, since K ′ must
have at least 2 parts, m2 and mn. Now consider the second case, mn+1 �= m1

and mn is the size of the part with the most vertices. Since m1 ≤ m2, clearly
(mn+1 − m1) + m2 + · · · + mn−1 = mn+1 + (m2 − m1) + m3 + · · · + mn−1 ≥
mn+1 +m3 + · · ·+mn−1 > mn+1 ≥ mn. So if the maximum part has mn vertices,
then K ′ is a nontrivial complete multipartite graph with either n or n − 1 parts.
By induction, all vertices will be used in any maximum matching of this graph.
Furthermore, by making such a matching and adding the m1 edges between parts
of size m1 and mn+1 mentioned above, a maximum matching using all vertices in
the original graph is obtained. Hence, any nontrivial complete multipartite graph
with an even number of vertices has a maximum matching using all vertices in the
graph. Now suppose T is odd. Then choose the vertex to be excluded from the
maximum matching to be from the part with m1 vertices. Since K is nontrivial, and
since there are an odd number of vertices, we know that mn+1 < m1+m2+···+mn.
Therefore mn+1 ≤ (m1 − 1)+m2 +m3 + · · ·+mn, so K ′ = Km1−1,m2,m3,...,mn+1 is
a nontrivial graph, now with an even number of vertices. And since n ≥ 3, it has
either n + 1 parts, or n parts if m1 = 1. So we can find a maximum matching for
K ′ as we did above. Consequently, we have obtained a maximum matching for K
using all but one vertex. Therefore, for any nontrivial complete multipartite graph,
we can find a maximum matching using all but at most one vertex. Hence for any
nontrivial complete multipartite graph, M = �T/2�.

Theorem 3. Given any complete multipartite graph, Km1,m2,...,mn, where m1 ≤
m2 ≤ · · · ≤ mn and mn < m1 + m2 + · · ·+ mn−1, the following hold:

(i) M = �T/2�; and
(ii) the following algorithm produces a matching of size M :

Step 1: If there are an odd number of vertices, remove one vertex from the
smallest part and then relabel the parts that still have unused vertices in order of
increasing size.

Step 2: If there are exactly two nonempty parts, connect all vertices in one part
to vertices in the other and stop.

Step 3: If there are exactly three nonempty parts, follow the procedure outlined
in the 3-part theorem, and stop.

Step 4: Connect all vertices from a part with m1 vertices to the maximum part,
and then relabel remaining parts in order of increasing size. Return to Step 2.

6.3. Alternative proof: In the proof of this theorem, we have put edges into
a matching and looked at graphs with fewer vertices, and fewer parts, until no
vertices remained. We will now look at another proof of this theorem, one which
just reduces the number of parts in the graph and inserts the edges at the end.

Suppose that given any nontrivial complete multipartite graph with n parts,
M = �T/2�. Then, suppose we have a graph Km1,m2,...,mn,mn+1 with m1 ≤ m2 ≤
· · · ≤ mn ≤ mn+1, mn+1 < m1 +m2 + · · ·+mn, and n > 3. Consider the complete
multipartite graph with n parts, K ′ = Km1+m2,m3,...,mn,mn+1 . (See Figure 14.)
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Figure 14 – Constructing a Maximum Matching: Alternative Step One

This clearly is the original n + 1-partite graph with all edges between m1 and
m2 removed. Clearly in K ′ the maximum part is either mn+1 or m1 + m2. Note
that mn+1 < m1 + m2 + m3 + · · ·+ mn. Furthermore, m1 ≤ mn and m2 ≤ mn+1

so since n > 3, we know that m1 + m2 ≤ mn + mn+1 < m3 + m4 + · · · + mn +
mn+1. Therefore, the maximum part in the graph Km1+m2,m3,m4,...,mn,mn+1 has
fewer vertices than the sum of the vertices in all of the other parts. Thus we
have a nontrivial multipartite graph with n parts. Hence, all vertices, (except one
possible odd vertex), in the graph will be used in any maximum matching of K ′.
Consequently, the same is true for the complete multipartite graph with n+1 parts,
Km1,m2,...,mn,mn+1. Thus we know M = �T/2� for the complete multipartite graph
with n+1 parts. So, by induction, for any nontrivial complete multipartite graph,
all but at most one vertex will be unused in any maximum matching, or M = �T/2�.

The importance of this proof is that we get a much more general statement about
where edges go in the maximum matching. The first proof says that if all edges in
the part with the least vertices are connected to vertices in the maximum part, and
this process is repeated, then eventually a nontrivial complete multipartite graph
with either 2 or 3 parts is obtained for which we know the arrangement of the
edges in a maximum matching. So in essence we know the exact arrangement of
the edges for a particular maximum matching of any complete multipartite graph.
The second proof shows that the parts can be combined into fewer parts with more
vertices per part until we have a nontrivial complete multipartite graph with 3
parts, and then a maximum matching can be produced. So using this second proof
we can find many different edge arrangements for a maximum matching in any
complete multipartite graph.

7. Combination of Results:

We now consider the multipartite graph Km1,m2,...,mn where m1 ≤ m2 ≤ · · · ≤
mn. If the maximum part is trivially large, mn >

∑n−1
i=1 mi, then we see that the size

of any maximum matching is M =
∑n−1

i=1 mi = 2
2

∑n−1
i=1 mi < (mn+

∑n−1
i=1 mi)/2 =

(
∑n

i=1 mi)/2 = T/2. Hence in this case, the size of any maximum matching
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must be M = min{∑n−1
i=1 mi, � 1

2

∑n
i=1 mi�}. Suppose instead, that the maxi-

mum part is not trivially large, mn <
∑n−1

i=1 mi. Then the size of any maxi-
mum matching is M = � 1

2

∑n
i=1 mi� ≤ 1

2 [(
∑n−1

i=1 mi) + mn] < 1
2 (2

∑n−1
i=1 mi) =∑n−1

i=1 mi. Hence in this case, the size of any maximum matching must be M =
min{∑n−1

i=1 mi, � 1
2

∑n
i=1 mi�}. Finally, if when the maximum part has exactly the

same number of vertices as the total number of vertices in the smaller parts,
mn =

∑n−1
i=1 mi, then the size of any maximum matching is M = 1

2

∑n
i=1 mi =

1
2 (

∑n−1
i=1 mi + mn) = 1

2 (2
∑n−1

i=1 mi) =
∑n−1

i=1 mi. Thus, the size of any maximum
matching is M = min{∑n−1

i=1 mi, � 1
2

∑n
i=1 mi�}. Since there are no other possibili-

ties for the size of the maximum part in a complete multipartite graph, we get the
following:

Theorem 4. Given any complete multipartite graph Km1,m2,...,mn , with mn ver-
tices in the maximum part, the size of a maximum matching is

M = min{
n−1∑

i=1

mi, �12
n∑

i=1

mi�}.
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