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Abstract

In this paper we introduce the concept of fair reception of a graph which
is related to its domination number. We prove that all graphs G with a fair
reception of size γ(G) satisfy Vizing’s conjecture on the domination number of
Cartesian product graphs, by which we extend the well-known result of Bar-
calkin and German concerning decomposable graphs. Combining our concept
with a result of Aharoni and Szabó we obtain an alternative proof of the fact
that chordal graphs satisfy Vizing’s conjecture. A new infinite family of graphs
that satisfy Vizing’s conjecture is also presented.
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1 Introduction

More than forty years ago Vizing proposed the following conjecture on the domina-
tion number of the Cartesian product of two graphs.

Vizing’s Conjecture For any graphs G and H, γ(G� H) ≥ γ(G)γ(H).

∗Supported by the Ministry of Science of Slovenia under the grant P1-0297. The author is also

with the Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana.
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The conjecture was not given great attention in the first years of its existence,
while since the 1980’s several authors considered it, and showed the truth of the
conjecture for some special families of graphs; cf. surveys [6] and [8, Section 8.6],
and some more recent results on the topic [3, 4, 9]. One of the oldest partial results
is a beautiful, far-reaching theorem of Barcalkin and German [2] which shows that
the inequality in the conjecture is true if one of the graphs belongs to the so-called
class A (that can be defined in a rather simple and natural fashion), and the other
graph is arbitrary. This result was later extended by Hartnell and Rall to a more
general family of graphs [5]. In this note we present a different generalization of
the class A by using the concept of a fair reception. In addition, our result yields
the following general lower bound on the domination number of Cartesian product
of graphs: γ(G� H) ≥ max{γ(G)γF (H), γF (G)γ(H)}, where γF (G) stands for the
fair domination number of a graph G that we introduce in this paper.

In the rest of this section we present the most basic definitions. In the next
section we first introduce the concept of fair reception and then prove the main
theorem, the lower bound for γ(G� H). Then we show that this is a generalization
of the theorem of Barcalkin and German, present an infinite family of graphs Fk

for which γ(Fk) = γF (Fk) and prove that they are not in the class A from [2]. We
follow with a connection to the concept of independence-domination number γi of
a graph, as introduced by Aharoni and Szabó [1]. We prove that γF (G) ≥ γi(G)
for any graph G which as a by-product yields that chordal graphs satisfy Vizing’s
conjecture. In the last section we present a possible approach to the conjecture by
using a slightly modified fair reception method.

The Cartesian product G� H of graphs G and H is the graph with vertex set
V (G) × V (H), vertices (g, h) and (g′, h′) being adjacent whenever gg′ ∈ E(G) and
h = h′, or g = g′ and hh′ ∈ E(H). The subgraph of G� H induced by {g} × V (H)
is isomorphic to H. It is called an H-fiber and is denoted gH. Similarly one defines
the G-fiber, Gh, for a vertex h of H.

For a graph G = (V (G), E(G)), a set S is a dominating set if every vertex in
V (G)\S is adjacent to a vertex in S. The domination number γ(G) is the minimum
cardinality of a dominating set of G. We say that the set of vertices X from G

externally dominates set U ⊂ V (G) if U ∩ X = ∅ and for every u ∈ U there exists
an x ∈ X such that ux ∈ E(G).

2 Fair reception

Let S1, . . . , Sk be pair-wise disjoint sets of vertices from a graph G = (V,E) with
S = S1∪S2∪· · ·∪Sk, and let Z = V \S. We say that the sets S1, . . . , Sk form a fair
reception of size k if for any integer ℓ, 1 ≤ ℓ ≤ k, and any choice of ℓ sets Si1 , . . . , Siℓ

the following holds: if D externally dominates Si1 ∪ · · · ∪ Siℓ then

|D ∩ Z| +
∑

j,Sj∩D 6=∅

(|Sj ∩ D| − 1) ≥ ℓ. (1)
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That is, on the left-hand side we count all the vertices of D that are not in S, and
for vertices of D that are in some Sj, we count all but one from D ∩ Sj.

In any graph, any subset of the vertex set forms a fair reception of size 1. Another
example is related to the concept of 2-packing of a graph G which is a set of vertices
in G that are pair-wise at distance more than 2. By letting each set Si consist of
exactly one vertex of a 2-packing T we get a fair reception of size |T |. (Recall that
the 2-packing number ρ2(G) of a graph G is the size of a largest 2-packing in G.
Hence in any graph G there is a fair reception of size ρ2(G).)

Given a graph G, the largest k such that there exists a fair reception of size k in
G is denoted by γF (G), and called the fair domination number of G. (For instance
in C5 we can put a vertex to S1 and the antipodal edge to S2, and obtain a fair
reception of size 2. Thus γF (C5) = 2 = γ(C5).) We begin with the following basic
observation about the fair domination number.

Proposition 1 For any graph G, ρ2(G) ≤ γF (G) ≤ γ(G).

Proof. The first inequality has been established above. Suppose there is a graph G

such that r = γ(G) < γF (G) = k. Let A be a minimum dominating set and assume
that the sets S1, S2, . . . , Sk form a fair reception of size k in G. Since r < k the
set A must be disjoint from at least one of these sets. Assume that A ∩ Si = ∅ for
1 ≤ i ≤ t and that A ∩ Sj 6= ∅ for t + 1 ≤ j ≤ k.

As in our definition let S = S1∪S2∪· · ·∪Sk and Z = V \S. The set A externally
dominates S1 ∪ S2 ∪ · · · ∪ St and so it follows from the definition of fair reception
that

t ≤ |A∩Z|+
∑

j,Sj∩A 6=∅

(|Sj ∩ A| − 1) = |A∩Z|+
k

∑

j=t+1

|Sj ∩ A|− (k− t) = |A|−k + t .

This immediately implies that k ≤ |A|, which is a contradiction. �

We continue with the following (our main) result.

Theorem 2 Let G = (V (G), E(G)) and H = (V (H), E(H)) be arbitrary graphs.
Then

γ(G� H) ≥ max{γ(G)γF (H), γF (G)γ(H)}.

Proof. Let D be a minimum dominating set of G� H. Let S1, S2, . . . , Sk be
pair-wise disjoint sets of vertices from H that form a fair reception of H, where
k = γF (H). As above, we denote S = S1 ∪ S2 ∪ · · ·Sk, and Z = V (H) \ S. Let
Di = D ∩ (V (G) × Si) and denote by D′

i the projection of Di to G. Note that
D′

i contains vertices x of G such that (x, y) ∈ D for some y ∈ Si, and |Di| ≥ |D′
i|.

(Note that |Di| = |D′
i| only if there is exactly one such y for each x ∈ D′

i.) Let
di = |Di| − |D′

i| and d = |(V (G) × Z) ∩ D|. Moreover, for every x ∈ V (G) let

dx
i =

{

|xH ∩ Di| − 1 , if |xH ∩ Di| > 0
0 , otherwise
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and
dx = |({x} × Z) ∩ D|.

By letting Dx = D ∩ xH, the sum dx +
∑k

i=1 dx
i represents the number of vertices in

Dx that are not counted within |D′
1| + · · · + |D′

k|.
For each i we denote by

Ti = {x ∈ V (G) : x is not dominated by D′
i}.

Clearly D′
i ∪ Ti is a dominating set of G, hence |D′

i| + |Ti| = |D′
i ∪ Ti| ≥ γ(G). For

x ∈ V (G) let T x be the set of those integers i from 1 to k for which x ∈ Ti. By the
definitions of T x and Ti, it is clear that

∑

x∈V (G)

|T x| =
k

∑

i=1

|Ti|. (2)

Note that for x ∈ V (G), and any i ∈ T x, the set of vertices {(x, y) : y ∈ Si} is not
dominated by Di. Hence all these vertices must be (externally) dominated by the
vertices from Dx. Since xH is isomorphic to H this means that the projection pH(Dx)
of Dx onto H externally dominates the sets Si for all i ∈ T x. Since S1, S2, . . . , Sk

form a fair reception of H, we have

dx +

k
∑

i=1

dx
i ≥ |T x|. (3)

Now, we infer

|D| =

k
∑

i=1

|Di| + d =

k
∑

i=1

(|D′
i| + di) + d

=

k
∑

i=1

|D′
i| +

k
∑

i=1

∑

x∈V (G)

dx
i + d

=

k
∑

i=1

|D′
i| +

∑

x∈V (G)

(

k
∑

i=1

dx
i + dx)

≥
k

∑

i=1

|D′
i| +

∑

x∈V (G)

|T x| (by (3))

=
k

∑

i=1

|D′
i| +

k
∑

i=1

|Ti| (by (2))

≥ kγ(G) = γF (H)γ(G) .

An observation that we may reverse the roles of G and H concludes the proof. �
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Corollary 3 If G is a graph with γF (G) = γ(G), then G satisfies Vizing’s conjec-
ture.

Barcalkin and German [2] introduced the class of so-called decomposable graphs,
and showed that they satisfy Vizing’s conjecture. Recall that a graph is decompos-
able if its vertex set can be partitioned into γ(G) subsets, each of which induces
a complete subgraph (we can also say that G partitions into γ(G) cliques). The
following fact is easy to see.

Proposition 4 Let G be a decomposable graph. Then a partition of the vertex set
into γ(G) cliques yields a fair reception of G of size γ(G) (in which S equals V (G)).

Note that a family of sets that form a fair reception in a graph G also form a fair
reception in any spanning subgraph of G. Hence by the above proposition, the class
of graphs G with γ(G) = γF (G) contains the class A (of graphs that can be realized
as spanning subgraphs of decomposable graphs with the same domination number).
Thus, Theorem 2 is a generalization of the result by Barcalkin and German [2]. To
see that this generalization is not just an equivalent statement, we will present a
class of graphs that are not in A, yet γ(G) = γF (G) holds for these graphs.

Figure 1: Graph F2

Let Fk be the graph with

V (Fk) = {a, a1, a2, . . . , a2k, b1, b2, . . . , bk, x1, x2, . . . , x2k, y1, y2, . . . , y2k, z1, z2, . . . , z2k},

and the edge set defined as follows. Vertices a, a1, a2, . . . , a2k form a clique, and ver-
tices a1, a2, . . . , a2k, b1, b2, . . . , bk, x1, x2, . . . , x2k form another clique; for i = 1, . . . , k
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we have: x2i−1, x2i, y2i−1 and y2i form a clique, and bi is adjacent to z2i−1 and to
z2i; finally for i = 1, . . . , 2k we have that ai is adjacent to yi, zi is adjacent to yi,
and xi is adjacent to zi. See Figure 1 where F2 is depicted (the first two cliques are
marked by dotted circles, to avoid the drawing with too many edges).

We will now prove that for any k, the graph Fk satisfies each of the following
claims. For the sake of simplified notation, let

E′ = {aiyj : j 6∈ {i, i + 1} if i is odd, or j 6∈ {i − 1, i} if i is even} ,

a set of edges from Fk.

1. ρ2(Fk) = k + 1;

2. γ(Fk) = 2k + 1;

3. γF (Fk) = 2k + 1;

4. For any edge e ∈ E(Fk) \ E′, γ(Fk + e) < γ(Fk);

5. Fk is not in class A;

To prove these we will make use of the following notation. For each 1 ≤ i ≤ 2k,
let Si = {xi, yi, zi}, let S2k+1 = {a, a1, a2, . . . , a2k}, and for 1 ≤ j ≤ k we set
Cj = S2j−1 ∪ S2j ∪ {bj}. Sometimes one of these names will denote the subgraph
induced by this set of vertices and other times it will refer only to the set of vertices.
The meaning will be clear from the context. In addition, let B = {b1, b2, . . . , bk},
X = {x1, x2, . . . , x2k}, Y = {y1, y2, . . . , y2k} and Z = {z1, z2, . . . , z2k}.

To prove Claim 1 we note that each Cj has diameter two, S2k+1 is complete, and
V (Fk) = S2k+1 ∪ C1 ∪ · · · ∪ Ck. By using the pigeon hole principle it now follows
that {a} ∪ {z2, z4, . . . , z2k} is a maximum 2-packing and hence ρ2(Fk) = k + 1.

Let D be a minimum dominating set of Fk. For every j, 1 ≤ j ≤ k, D ∩ Cj 6= ∅
since N [z2j ] ⊆ Cj. Also, because N [a] ⊆ S2k+1 it follows that D ∩ S2k+1 6= ∅.
Suppose that |D ∩ Cj| = 1 for some j. By considering the various possibilities for
this intersection, it is clear that D ∩ Cj = {bj}. But now it follows that both of
a2j−1 and a2j belong to D in order to dominate y2j−1 and y2j. Let I = {i : 1 ≤
i ≤ k, |D ∩ Ci| = 1} and let J = {1, 2, . . . , k} \ I. If |I| = 0, then |D| ≥ 2k + 1.
Otherwise |D| = 3|I| + 2|J | = 2k + |I|, and this is clearly minimized when |I| = 1.
Since Z ∪ {a} dominates Fk, it now is clear that γ(Fk) = 2k + 1. Therefore Claim 2
is proved.

We will now show that S1, S2, . . . , S2k+1 form a fair reception of size 2k + 1.
For this purpose let S = S1 ∪ S2 ∪ · · · ∪ S2k+1. Let T = {Si1, Si2 , . . . , Siℓ} be
a subcollection of these sets and suppose that D is an external dominating set of
∪ℓ

j=1Sij . It is clear that 2k+1 6= ij for any j since the vertex a cannot be dominated
from outside S2k+1. For each j, 1 ≤ j ≤ ℓ, clearly b

⌈
ij

2
⌉
∈ D to dominate zij . Let t

be odd. If St, St+1 ∈ T , then b t+1

2

∈ D and at, at+1 ∈ D. If only one of St and St+1
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belongs to T (say St), then b t+1

2

∈ D and at least one of xt+1, yt+1, at also belongs

to D. It now follows that

|D ∩ (V (Fk) \ S)| +
∑

j,Sj∩D 6=∅

(|Sj ∩ D| − 1) ≥ ℓ ,

and hence S1, S2, . . . , S2k+1 form a fair reception of size 2k + 1 in the graph Fk.
Therefore, γF (Fk) = 2k + 1.

To prove that γ(Fk + e) < γ(Fk) for each edge e ∈ E(Fk) \E′ we provide a table
that gives a dominating set of Fk + e of order 2k for each of the possible types of
edges e. To make the notation tractable we make some simplifying assumptions that
are completely general. For example, if an edge of the form azi is being considered,
we may assume i = 1.

e Dominating set of Fk + e e Dominating set of Fk + e

ax1 {x1, x2, . . . , x2k} ab1 {b1, x2, . . . , x2k}
ay1 {y1, x2, . . . , x2k} az1 {z1, x2, . . . , x2k}
a1y2 {a1, b1, x3, . . . , x2k} a1z1 {a1, x2, . . . , x2k}
a1z2 {a1, x1, x3, . . . , x2k} x1y3 {x1, x2, b2, a4, x5, x6, . . . , x2k}
x1z2 {a, x1, x3, . . . , x2k} x1z3 {a, x1, x2, x4, . . . , x2k}
b1y1 {b1, a2, x3, . . . , x2k} b1y3 {b1, b2, a4, x2, x5, . . . , x2k}
b1z3 {b1, x2, a3, x4, x5, . . . , x2k} y1y3 {y1, x2, b2, a4, x5, . . . , x2k}
y1z2 {y1, a, x3, x4, . . . , x2k} y1z3 {a, y1, x2, x4, x5, . . . , x2k}
z1z2 {z1, a2, x3, x4, . . . , x2k} z1z3 {z1, x2, a3, x4, x5, . . . , x2k}

By Claim 4, to prove that Fk does not belong to the class A it is sufficient to
prove that for any subset E′′ ⊂ E′ such that γ(Fk + E′′) = 2k + 1 = γ(Fk), it is
not possible to partition V (Fk) = V (Fk + E′′) into 2k + 1 complete subgraphs of
Fk +E′′. Let E′′ be such a subset of edges. Note that E′′ does not contain any set of
edges of the form {aiyj, aiyj+1} for j odd, since γ(Fk + E′′) = 2k + 1. This implies
that if C is a complete subgraph of Fk + E′′, then either C is already complete in
Fk or C contains at most one vertex from any set of the form {zj , yj, zj+1, yj+1}
for j odd. By definition it is easy to see that at least 2k complete subgraphs are
needed to cover Z, and none of these 2k complete subgraphs contains the vertex a.
Also, if one of these cliques intersects B (at, say bi), then two additional cliques will
be required to cover Ci. Therefore, because N [a] = S2k+1 it now follows that at
least 2k + 2 complete subgraphs of Fk + E′′ will be needed in any clique partition of
V (Fk + E′′), and Claim 5 is established.

We now show that the graphs Fk for k > 1 do not belong to the class of graphs
introduced by Hartnell and Rall in [5]. Hence the graphs G with γF (G) = γ(G)
present a generalization of the class A that is distinct from class X . Since the
description of X is rather lengthy, we refer the reader to its definition on page 211
in [5].

Proposition 5 For any integer k, k > 1, the graph Fk is not a spanning subgraph
of a graph G from class X such that γ(Fk) = γ(G).
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Proof. We prove the statement for k = 2; see Figure 1. The general proof is similar
but is notationally complex. Assume for the sake of contradiction that there is such a
graph G ∈ X . Because of Claim 4, we may assume, as in our proof of Claim 5 above,
that G = F2+E′′ for some subset E′′ of {a1y3, a1y4, a2y3, a2y4, a3y1, a3y2, a4y1, a4y2},
subject to the requirement that γ(G) = 5 = γ(F2).

The graph G has only one simplicial vertex, namely a, and hence G has at most
one buffer clique. Since G is not decomposable, there must be at least one “star-
like” subgraph in the partition of V (G). We denote these by T1, . . . , Tr to avoid
confusion with earlier notation. Each Ti has a center vertex, ti, all of whose neighbors
belong to Ti. By considering each of the vertices of G, one can show that the set of
centers of these star-like subgraphs is a subset of one of {z1, z3}, {z1, y3}, {y1, z3} or
of an obvious symmetric counterpart. (For example, {z2, y3} could be a set of such
centers.) If u is a vertex of a star-like subgraph Ti, u 6= ti, then by definition each
neighbor of u that is not in Ti belongs either to a buffer clique or to a special clique.
It is now straightforward to check that any choice of these centers forces G to have
more than one special clique. This contradicts the structure of a graph in X and
thus completes the proof. �

It is still not clear whether every graph G from the class X admits a fair reception
of size γ(G), but we think that this is not the case.

The fair domination number of a graph is related to another graph invariant
that was proposed by Aharoni and Szabó [1] as follows. Given a graph G and
an independent set I of vertices in G, the least size of a set of vertices in G that
dominates I is denoted by γI(G), and by γi(G) we denote the largest γI(G) over all
independent sets I in G. The invariant γi was used in the proof that chordal graphs
satisfy Vizing’s conjecture. In particular, it was shown that for any chordal graph
γi(G) = γ(G) [1]. We establish the following relation with our concept.

Proposition 6 For an arbitrary graph G, γF (G) ≥ γi(G).

Proof. Note that for any independent set I there exists a set S of size γI(G) that
externally dominates I (that is S ∩ I = ∅). Let I be an independent set of vertices
in a graph G with γI(G) = γi(G), and let S = {x1, . . . , xk} be a set of vertices of
size k = γi(G) that externally dominates I. Let the sets S1, . . . , Sk be a partition
of I such that Si ⊂ N(xi) (where N(xi) is the neighborhood of xi). We claim
that S1, . . . , Sk form a fair reception in G. Indeed, to (externally) dominate any
subfamily of ℓ sets Si, one needs at least ℓ vertices, otherwise we easily infer that
γI(G) < k which is a contradiction. Hence γF (G) ≥ k = γi(G). �

Combining Propositions 1 and 6 we obtain the following chain of inequalities for
an arbitrary chordal graph G:

γi(G) ≤ γF (G) ≤ γ(G) = γi(G).

Hence γi(G) = γF (G) = γ(G) and by Theorem 2 we infer
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Corollary 7 [1] If G is a chordal graph and H an arbitrary graph then γ(G� H) ≥
γ(G)γ(H).

We conclude this section with the following natural question.

Problem 1 Is there a general lower bound for γF (G) in terms of a function of
γ(G)? Say γF (G) ≥ γ(G) − 1?

3 Concluding remarks

Although we did not find an example of a graph for which it would be easy to prove
that γF (G) < γ(G), we believe there are such graphs. For instance, graph G1 in
Figure 2 seems to be a good candidate. This graph was used in [5] as an example
from the class X , hence Vizing’s conjecture is known to hold for this graph. We
shall now present another proof of this fact which is based on a partition similar to
the fair reception.

Figure 2: Almost fair-reception of graph G1

Consider the partition of the vertex set as seen in Figure 2. It is formed by the
sets S1 = {x1, y1}, S2 = {x2, y2}, and S3 = {x3, y3, z3}. The sets do not form a fair
reception because S1 can be externally dominated by x2 ∈ S2 and x3 ∈ S3, and so
the left-hand side of inequality (3) is equal to 0 in this case. One can readily check
(by looking at each combination of subsets from {S1, S2, S3}) that this is the only
such case in which the condition from (3) is not fulfilled. Without formally defining
it, it seems natural to call this kind of partition an almost fair reception.

The proof of Theorem 2 is based in part on the fact that the union of the set
of vertices D′

i that project to G from Di and the set Ti = V (G) \ (∪v∈D′

i
N [v])
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(corresponding to the set of cells Ti × Si that are missed by Di) form a dominating
set. This is clearly a very strong requirement which may be needed only in the case
when Ti is a 2-packing. One might weaken this condition by taking instead of Ti

just some subset T ′
i of G that dominates Ti, and still we have |D′

i| + |T ′
i | ≥ γ(G).

Consider now the Cartesian product G� G1 of an arbitrary graph G with the
graph G1 (see also Figure 3). From the structure of G1 in which z3 ∈ S3 has no
neighbors outside S3 we get T3 = ∅. Next, for any vertex a ∈ T2 the vertex (a, x)
must be in D to ensure that the cell {a} × S2, missed by D2, is dominated. Also,
if a ∈ T1 ∩ T2 then (a, x) ∈ D, and moreover |({a} × S3) ∩ D| ≥ 2. However, for
b ∈ T1 \ T2 the cell {b} ×S1 that is missed by D1 could be dominated by (b, x2) and
(b, x3), while (b, x) need not be in D. For all such cells the vertex (b, x) is dominated
by (b, y2) or (b, y3) or it is dominated from the Gx-fiber. The former two cases imply
|({b}×S2)∩D| = 2, or |({b}×S3)∩D| ≥ 2, respectively, and one of the ”additional”
vertices can be used in the recount for the missing cells of T1 (let us denote the set
of such vertices b by A1). The latter case, that (b, x) is dominated from the Gx-
fiber, needs some more investigation. It is clear that b cannot be adjacent to an
a ∈ T2, since then (b, x2) ∈ D would dominate a vertex from the cell {a} × S2, a
contradiction. Thus, those (a, x) ∈ D that are used in the recount for the missing
cells of T2 do not dominate (b, x), where b ∈ T1 \ T2. Let T ′

1 be a set of vertices
c ∈ V (G) \ (T2 \ T1) such that vertices (c, x) ∈ D dominate all vertices (b, x) where
b ∈ T1 \ A1. It is clear that |D′

1| + |T ′
1| + |A1| ≥ γ(G), and vertices from T ′

1 and A1

have not been counted within |D′
2| or |D′

3| nor have been used in the recount for the
missing cells of T2. This shows that Vizing’s conjecture holds for graph G1.

Figure 3: Cartesian product with graph G1.

10



We think that by a similar but more tedious arguing one can prove that all
graphs from the class X satisfy Vizing’s conjecture. However, the desire is to use a
similar method for other classes of graphs, for which the conjecture is still open.
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