
Emergency Response Sets in Graphs

Jean Blair, US Military Academy

Wayne Goddard, Sandra M. Hedetniemi, Stephen T. Hedetniemi

Clemson University

Fredrik Manne, University of Bergen

Douglas Rall, Furman University

Abstract

We introduce a k-response set as a set of vertices where responders can

be placed so that given any set of k emergencies, these responders can

respond, one per emergency, where each responder covers its own vertex

and its neighbors. A weak k-response set does not have to worry about

emergencies at the vertices of the set. We define Rk and rk as the minimum

cardinality of such sets. We provide bounds on these parameters and discuss

connections with domination invariants. For example, for a graph G of

order n and minimum degree at least 2, R2(G) ≤ 2n/3, while r2(G) ≤ n/2

provided G is also connected and not K3. We also provide bounds for trees T

of order n. We observe that there are for each k trees for which rk(T) ≤ n/2,

but that the minimum Rk(T) appears to grows with k; a novel computer

algorithm is used to show that R3(T) > n/2. As expected, these parameters

are NP-hard to compute, and we provide a linear-time algorithm for trees

for fixed k.

1 Introduction

There are many facility placement problems on graphs. A typical question is

to place facilities such that every edge or vertex is within some distance of a

facility. This can be viewed as if guards are placed to maintain surveillance over

a network. Although these types of problems are well studied, there has been

very little research on the dynamic problem: what if the guards have to move to

respond to the emergencies. One area of research is that of security [5], where

guards need to respond to a sequence of emergencies. Another is the area of

alliances [7], where one needs to be able to respond to any set of emergencies.

Here we consider the setting where one has to handle a limited number of

simultaneous emergencies. This can be thought of as having to respond, for

example, to multiple fires or power outages simultaneously. More specifically,

1

given a graph we place facilities (guards) at a subset of vertices where each

facility can respond to an emergency at the vertex where it is placed or at a

neighboring vertex. The object is then to place the minimum number of facilities

such that it is possible to respond to any k simultaneous emergencies. Similarly

we also consider the case where an emergency does not occur at a vertex where

a facility has been placed.

1.1 Definitions

Given an undirected graph G = (V,E), we denote by N [x] the closed neighbor-

hood of a vertex x; that is, x union its neighbors. Consider subsets A and R of

V . We say that R can handle A if a set of responders stationed at the vertices

of R can respond to simultaneous emergencies at each vertex of A. In this, a

responder stationed at a vertex u ∈ R responds by either staying put or moving

to a neighbor of u—so that there is a responder at each vertex of A. We are

allowed only one responder and only one emergency per vertex. The set R is a

k-response set of G if R can handle all subsets A ⊆ V of size at most k. We

define Rk(G) of a graph G as the minimum cardinality of a k-response set of G.

While this parameter is our focus, it is also reasonable to consider the situ-

ation where emergencies cannot occur at the vertices where the responders are

stationed. We call this version a weak k-response set , and let rk(G) denote

the minimum cardinality of a weak k-response set.

Recall that a k-dominating set is a set D of vertices such that every vertex

not in D is adjacent to at least k vertices in D. The minimum cardinality of

a k-dominating set is denoted γk. There are obvious inequalities among these

invariants: for any k,

γ = γ1 ≤ rk ≤ Rk ≤ γk.

We explicitly assume that n ≥ k ≥ 2 throughout (since the case k = 1 is exactly

a dominating set).

2 Basic Results

In the following we present several basic results on the size of Rk(G) and rk(G)

both for general graphs and for some of the standard graphs such as the complete

graph, the complete bipartite graph, and the cycle.

It is clear that:

2

Observation 2.1 For a graph G of order n and any k ≤ n:

(a) Rk(G) ≥ k.

(b) rk(G) ≥ min(k, n/2).

(c) If G has no isolate then rk(G) ≤ n − 1.

Indeed, it is not hard to show that the only isolate-free graph G with rk(G) =

n − 1 is the star K1,n−1.

For a set R and vertex v ∈ R, a private neighbor of v (with respect to R)

is a vertex w such that N [w]∩R = {v}. If w 6= v then w is an external private

neighbor.

Observation 2.2 A set R is a [weak] 2-response set iff

(a) R is dominating; and

(b) every vertex in R has at most one [external] private neighbor.

Proof. Necessity: Clearly R must be dominating. If a vertex has two private

neighbors, then simultaneous emergencies at these neighbors causes problems.

Sufficiency: For any two emergencies their dominators can respond unless the

emergencies are only dominated by the same vertex. But from (b) this will not

happen. qed

We calculate next the values of Rk and rk for the standard graphs. The first

observation is straight forward:

Observation 2.3 For the complete graph Kn: rk(Kn) = k for k ≤ n/2 and

rk(Kn) = ⌈n/2⌉ for k > n/2, while Rk(Kn) = k for k ≤ n.

Observation 2.4 For the complete bipartite graph K(a, b) with a ≤ b:

i) for k ≤ a/2, rk = Rk = 2k;

ii) for a/2 ≤ k ≤ a, rk = Rk = a;

iii) for a < k ≤ b, rk = Rk = b;

iv) for k ≥ b, rk = b and Rk = k.

Proof. (i,ii) We have k ≤ a. There are two cases. Suppose both sides have at

least k vertices without responders. Then to respond to k emergencies on one

side, one needs k responders on the other side. Therefore there must be at least

2k responders. Suppose one side has less than k vertices without responders.

Then consider emergencies at the unprotected vertices on that side: after the

3

movement of responders to those vertices, that side is full. Hence, there are at

least min(a, b) = a responders. That is, between the two cases, the total number

of responders is at least min(a, 2k).

Now, placing k responders on each side clearly works, as does placing a re-

sponders on the smaller side. Hence rk = Rk = min(a, 2k).

(iii,iv) We have k > a. If the bigger side has k unprotected vertices, then one

cannot respond to emergencies at those vertices. So the number of unprotected

vertices there is less than k, and after responding to emergencies at those vertices,

the bigger side will be full. Hence, we need at least b responders. For a weak

k-response set, clearly b responders on the bigger side will work.

For a k-response set, we clearly need at least k responders. If k > b, any

placement of k responders works. qed

Observation 2.5 For fixed k, the cycle and the path on n vertices both have

(a) Rk = kn/(k + 2) + O(1), and (b) rk = kn/(2k + 1) + O(1).

Proof. (a) Consider a tract of k + 2 successive vertices. One needs at least k

responders in the tract to handle k emergencies in the middle of the tract. This

gives the lower bound.

For the upper bound, partition the path or cycle into tracts of size k +2, and

for each tract place k responders in the middle.

(b) Consider a tract of 2k +1 successive vertices. To handle k emergencies in

the tract, endpoints excluded, one needs at least k responders on the tract. This

gives the lower bound.

For the upper bound, partition the path or cycle into tracts of size 2k + 1,

and for each tract place k responders on a vertex cover of the tract. qed

3 Bounds

If a graph G has minimum degree δ = k−1, then the best upper bound for Rk(G)

is n− (k−1) for large order n, which is achieved by the complete bipartite graph

Kk−1,n−k+1. But if every vertex has at least k neighbors, there is an upper

bound in term of n and δ. This follows immediately from the upper bound for k-

domination: Cockayne, Gamble and Shepherd [2] showed that γk(G) ≤ kn/(k+1)

for minimum degree at least k.

4

Observation 3.1 For a graph G with δ(G) ≥ k, Rk(G) ≤ kn/(k + 1), and this

bound is sharp.

A corresponding connected graph with Rk(G) = kn/(k + 1) can be found by

taking a collection of disjoint cliques Kk+1, marking one vertex in each clique,

and adding edges to turn the marked vertices into a clique.

The situation with weak response sets is different if the graph is required to

be connected:

Theorem 3.1 If G 6= K3 is connected with δ(G) ≥ 2, then r2(G) ≤ n/2.

Proof. The proof is by induction on n. The base case is n = 4: then G contains

a spanning 4-cycle and r2(G) = 2. Define a vertex as small if it has degree 2;

and large otherwise.

We may remove edges while the graph—or rather its components—still obeys

the hypothesis. So we may assume that no edge joins two large vertices unless

its removal would create a K3-component. Define P as the set of vertices having

degree 3 with one large neighbor and two small neighbors that are adjacent. Let

L be the large vertices except for P . We may assume there is no P–P edge: else

we have a 6-vertex graph, and the theorem is easily checked for that graph.

Case 1: Suppose there is an induced path a, b, c, d such that b and c are

small. Then let G′ be the graph with {b, c} contracted out; that is, delete b and c

and add the edge a–d. If this graph satisfies the hypothesis, then let S′ be a

2-response set of G′. This set can be extended to a 2-response set of G by adding

one of {b, c}: if neither a nor d is in S′, or if both a and d are in S′, then either

b or c will do; if only one of a and d is in S′, then add the non-neighbor. If G′

does not satisfy the hypothesis, then G′ = K3 and so G = C5 and the result is

easily checked.

Case 2: There is a triangle a, b, c, a such that b and c are small and a has

degree at least 4. Then let G′ be the graph with {b, c} deleted. This graph satisfies

the hypothesis and any 2-response set of G′ can be extended to a 2-response set

of G by adding either b or c.

Case 3: There is no such path or triangle. Then any small vertex either:

(A) has two large neighbors; (B) is in a triangle (denoted a B-triangle) with

another small vertex and a P -vertex; or (C) is in a 4-cycle (denoted a C-cycle)

with two other small vertices.

5

Now, form a set S as follows. Take all of L (the large vertices, except for

the P vertices). Then add one small vertex from each B-triangle, and the small

vertex of each C-cycle that has two small neighbors. It is not hard to show that

S is a 2-response set.

Let |L| = l and let a denote the number of small vertices with two large

neighbors. Let q denote the number of B-triangles and C-cycles combined. It

follows that n = l + a + 3q and |S| = l + q.

Now, by connectivity, a ≥ l − 1. Further, let M be the sum of the degrees of

the vertices in L. Then, trivially M ≥ 3l, while M ≤ 2q + 2a.

Hence, we need to maximize l + q subject to the constraints a ≥ l − 1,

a, l, q ≥ 0, l + a + 3q = n, and 3l ≤ 2q + 2a. This has a maximum of (3n + 1)/7,

achieved at q = (n + 5)/7, l = (2n − 4)/7 and a = (2n − 11)/7. qed

Equality is achieved for the generalized corona: take disjoint C4’s, mark a

vertex on each, and add edges to make the marked vertices connected. An

example is given in Figure 1. (Note that this graph is not edge-minimal.)

Figure 1: A connected graph with maximum r2

This leaves open the question of a sharp upper bound for rk for connected

graphs.

3.1 Trees

We have already seen that the star has a large response value. We start with

lower bounds for 2-response sets.

Theorem 3.2 For any tree T ,

(a) R2(T) ≥ 2(n + 1)/5;

(b) r2(T) ≥ (n + 1)/3;

and these bounds are sharp.

Proof. (a) Consider any 2-response set R of cardinality d. For the forest

induced by R, define a as the number of nontrivial components, and b the number

of isolated vertices. Thus

d ≥ 2a + b.

6

Define ℓ as the number of external private neighbors of vertices in R and

m = n−d−ℓ as the number of remaining vertices outside R. By Observation 2.2,

it follows that

ℓ ≤ d − b.

Further, we claim that

m ≤ a + b − 1.

This can be seen by taking the tree T , discarding any edge both of whose ends

are in V − R, then discarding some edges to make each vertex of V − R have

degree at most two, discarding any external private neighbors of R, and finally

contracting each component of R to a single vertex. The result T ′ is a forest

such that each of the m vertices has degree 2 and they form an independent set.

That is, T ′ is formed from a forest with a+ b vertices by subdividing m different

edges. That is, m ≤ a + b − 1.

By straightforward algebra it then follows that n ≤ 5d/2 − 1.

(2) The proof for a weak-response set R is similar, except that even an isolated

vertex of R can have a private neighbor. In particular, we have:

n = d + ℓ + m,

ℓ ≤ d,

m ≤ d − 1,

whence the result. qed

For a tree which shows that the R2 bound is sharp, start with the disjoint

union of a P4’s. Then add a−1 new vertices, each of degree 2, joined to a central

vertex of two different P4’s such that the resultant graph on 5a − 1 vertices is

connected. A 2-response set of size 2a is given by taking the two central vertices

on each of the P4’s. An example is the left tree of Figure 2.

Figure 2: Trees with minimum R2 and r2

For a tree which shows that the r2 bound is sharp, start with the disjoint

union of d P2’s and mark one end of each. Then add d − 1 new vertices, each of

7

degree 2, joined to the marked end of two different P2’s such that the resultant

graph on 3d− 1 vertices is connected. A weak 2-response set of size d is given by

taking the marked vertex on each P2. An example is the right tree of Figure 2.

The question for a weak 3-response set is, surprisingly, almost the same.

Theorem 3.3 For any tree T , r3(T) ≥ (n + 2)/3, and this bound is sharp.

Proof. Clearly r3(T) ≥ r2(T). In order to have a tree with r3(T) = (n + 1)/3,

we need equality at several places in the proof of Theorem 3.2b. In particular,

we need ℓ = d and m = d − 1.

But that means that every vertex of R has an external private neighbor;

in particular there is a pair P of vertices in R at distance 2. But one cannot

handle an emergency at the private neighbors and the common neighbor of P

simultaneously. qed

For a tree that shows this result is best possible, take a star with d− 1 edges

and subdivide each edge twice. The resultant octopus has 3d−2 vertices and for

a weak 3-response set of size d, take the central vertex and the middle vertex on

each arm. An example is the left tree of Figure 3.

Figure 3: Trees with minimum r3 and R3

On the other hand,

Theorem 3.4 For any tree T , R3(T) ≥ (n + 1)/2, and this bound is sharp.

This is proven in Section 5. An example of equality is the star with every

edge subdivided once. A 3-response set is responders at every non-leaf vertex.

An example is the right tree of Figure 3.

In general, the lower bound for rk(T) never grows beyond n/2, since any tree

with a perfect matching has rk(T) ≤ n/2 for all k. However, the lower bound for

Rk(T) seems to grow as k increases.

8

4 Algorithmic Issues

We show that, as expected, the associated decision problems are NP-complete.

We then determine linear-time algorithms for trees.

4.1 NP-Completeness

Both the k-response and the weak k-response decision problems are NP-hard to

compute. We give the details for the simplest case:

Observation 4.1 The question of, given graph G and integer b is R2(G) ≤ b,

is NP-complete.

Proof. Clearly the question is in NP. For the intractability we reduce from the

domination number problem. Given a graph G, let H be the graph 2G + K1;

that is, two disjoint copies G′ and G′′ of G together with a new vertex x adjacent

to all other vertices.

We claim that R2(H) ≤ 2k + 1 iff γ(G) ≤ k. Let D be a dominating set of G

of cardinality k. Then D′ ∪ D′′ ∪ {x} is a 2-response set of H.

Conversely, let R be a 2-response set of H of cardinality 2k + 1. If x /∈

R, then the restrictions of R to G′ and G′′ are both dominating sets, and one

has cardinality at most k. If x ∈ R, then since x has at most one private

neighbor, R − {x} dominates all but at most one vertex y of H. It follows that

the restrictions of R − {x} ∪ {y} to G and G′ are both dominating sets, and the

conclusion follows as before. qed

For example, this shows that the decision problem is NP-hard for chordal

graphs (since the domination problem is hard for such graphs and the reduction

preserves chordality).

4.2 Tree Algorithms

We next present an algorithm, for fixed k, for computing Rk(T) on a tree T . We

use the ideas pioneered in [8, 1]. Their work and subsequent work essentially

shows that a linear-time algorithm exists; the task is to produce an explicit

compact form for the algorithm. A similar approach can be used to produce an

algorithm for computing rk(T), but we omit this construction.

9

T[v]

(a) (b)

T[v]

T[w]

Figure 4: The tree algorithm.

Let k ≥ 1 be fixed. Let S be a set of vertices in T where responders are placed.

For v ∈ S, let rv denote the responder placed at vertex v. When responding to

an emergency, rv can move to any vertex in N [v].

Let T [v] be a subtree of T containing vertex v and all of the vertices in zero

or more of the subtrees in T − {v}. Figure 4a shows how T [v] is constructed.

The algorithm presented is based on first computing a solution for T [v] and

some subtree T [w] such that (v,w) ∈ E and T [v] ∩ T [w] = ∅. We then show

how to merge these results to form a combined solution for the subtree T ′[v] =

{T [v], T [w], (v,w)} as shown in Figure 4b. In this way one inductively builds up

solutions starting from leaves and single vertices and merge these until we have

a solution for the whole tree.

The main idea of the algorithm is to consider the movement of responders

between T ′[v] and T − T ′[v]. The edges on which these responders can move are

those that cross the dotted line in Figure 4b. Note that at most one responder

can move down to v from T − T ′[v], while rv can move up to at most one vertex

in T −T ′[v]. This yields four (disjoint) cases to be considered when T is handling

a set of emergencies:

• T ′[v] gets support: Some rx ∈ T − T ′[v] moves down to v.

• No exchange: No element in S moves between T ′[v] and T − T ′[v].

• T ′[v] relays support: v ∈ S and rv moves up to an adjacent vertex in

T − T ′[v] while some rx ∈ T − T ′[v] moves down to v.

10

• T ′[v] gives support: v ∈ S and rv moves up to an adjacent vertex in T−T ′[v]

without some rx ∈ T − T ′[v] moving down to v.

Consider a set S ⊆ V that can handle any k emergencies. It follows that if

T ′[v] gets support, then it must be able to handle min{k, |T ′[v]|} emergencies.

For the other three cases, the number of emergencies that T ′[v] can handle might

be smaller than k. If T ′[v] relays support, then from the perspective of T ′[v], this

is equivalent to v being in S and rv being used only to handle an emergency at v.

Thus when there is no exchange, T ′[v] can handle at least as many emergencies

as when relaying support. Similarly, when it relays support, T ′[v] can handle at

least as many emergencies as when giving support.

Given a rooted subtree U and a set S, we thus may define three values x, y

and z with x ≥ y ≥ z:

• x is the maximum number of emergencies U can always handle when there

is no exchange; (if x ≥ min{|U |, k} we set x = k);

• y is the maximum number of emergencies U can always handle when re-

laying support; (if y ≥ min{|U |, k − 1} we set y = k − 1; and if the root is

not in S then we set y = −1);

• z is the maximum number of emergencies U can always handle when giving

support; (same comments as with y).

(The reason for the bound of k − 1 on y and z is that, if all k emergencies are

in the subtree, then there is no need for relaying or giving support.) We say

that the set S has property H[x, y, z] if given support it can handle min{k, |U |}

emergencies and x, y and z are as above.

For example, if k = 3, U is the path on three vertices rooted at a leaf-vertex

and S is the two leaf-vertices, then U has property H[2, 1, 0]. For, it can handle

two emergencies with no exchange, but not three; it can handle one emergency

while relaying but not two; and the root is in S but cannot give support if there

is an emergency at the root. More examples are given in Figure 5 later.

For a given set S for T [v] and T [w], we must determine first if the combined

solution is feasible or not, and if it is, how many emergencies the combined

solution can handle.

Lemma 4.1 Consider a set S with properties H[a, b, c] in T [v] and H[d, e, f] in

T [w]. Then T ′[v] can handle min{k, |T ′[v]|} emergencies while getting support if

and only if b + d + 1 ≥ k.

11

Proof. Assume that b + d + 1 ≤ k − 1. Consider b + 1 emergencies in T [v]

and d + 1 emergencies in T [w]. By the definition of d it follows that T [w] must

have support from T [v] to handle this. In particular b ≥ 0. When T [v] is giving

support to T [w] it can only handle b emergencies even if it gets support from

outside of T [v]. Since b < k, it follows that T [v] cannot handle b+ 1 emergencies

while giving support to T [w]. Hence, there is a set of b + d + 2 emergencies that

T ′[v] cannot handle, even with support.

Assume that b + d + 1 ≥ k. Then any d emergencies in T [w] and any k − d

emergencies in T [v] can be handled if T ′[v] gets support from T − T ′[v]. If there

are more than d emergencies in T [w], then T [w] needs support from T [v]. At the

same time, there are at most k−d−1 emergencies in T [v]. But since b+d+1 ≥ k

it follows that b ≥ k−d−1 and T [v] can supply T [w] with the needed support. In

the case that b = −1, we have d = k and T [w] does not need support. qed

If Lemma 4.1 does not apply, then the following result shows how to compute

H[x, y, z] for T ′[v].

Lemma 4.2 Consider a set S with properties H[a, b, c] in T [v] and H[d, e, f] in

T [w]. If b + d + 1 ≥ k then S has property H[x, y, z] in T ′[v] where

x = min(a + f + 1, c + d + 1, k)

y = min(b, d, k − 1)

z = min(b, d, f + c + 1, k − 1).

Proof. We consider the values of x, y, and z separately.

(x) In this case T ′[v] is not getting help from the outside. If T [v] has a + 1

emergencies, then T [v] needs support from T [w]. But if at the same time T [w]

has f + 1 emergencies, then T [w] cannot give the needed support. It follows

similarly that the tree cannot handle c+1 emergencies in T [v] and d+1 in T [w].

Thus we must have x ≤ min(a + f + 1, c + d + 1, k). We include the k here since

there will never be more than k emergencies.

Now consider any x = min(a + f + 1, c + d + 1, k) emergencies where i emer-

gencies are in T [v] and j in T [w]. Then if both i ≤ a and j ≤ d, the event can

immediately be handled by the trees themselves. Next consider an event where

i ≥ a + 1 and therefore j ≤ f . This can be handled by giving support from

T [w] to T [v], and if f = −1 then x ≤ a and no support is needed. Similarly if

j ≥ d + 1, then i ≤ c and the event can be handled by giving support from T [v]

12

to T [w]. If c = −1 then x ≤ d and no support is needed. Thus it follows that

T ′[v] can handle any combination of x emergencies and the result follows.

(y) Note first that if v /∈ S then b = −1, so that y will also be set to −1.

If v ∈ S and v is giving support to T − T ′[v] while at the same time getting

support from T − T ′[v] then T [v] can handle b emergencies. Since there cannot

be any support given from T [v] to T [w], it follows that T [w] can handle up to

d emergencies. Thus the combined tree can handle the minimum of b and d

emergencies and no more. If T ′[v] is giving support then there can at most be

k − 1 emergencies in T ′[v]; thus we include k − 1 in the formula.

(z) Again, note that if v /∈ S then b = −1, so that z will also be set to −1. If

v ∈ S and v is giving support to T −T ′[v] there can at most be k−1 emergencies

in T ′[v]. There are three sets of emergencies that the combined tree cannot

handle: Since T [v] cannot give support to T [w], d+1 emergencies in T [w] cannot

be handled. Also, if T [v] gets support from w, it still cannot handle more than

b emergencies. Finally, if there are at least f + 1 emergencies in T [w], then w

cannot give support to v, so that T [v] can at most handle c emergencies. Note

that this also covers the special case when c = −1. qed

Now, for a given rooted subtree U , let C[x, y, z] be the minimum cardinality

of an S with property H[x, y, z]. If there is no such S, we set C[x, y, z] = +∞.

We compute C[x, y, z] for T ′[v] and for all values of x, y, and z based on the

values of C[a, b, c] for T [v] and all k ≥ a ≥ b ≥ c ≥ −1 and the values of C[d, e, f]

for T [w] and all k ≥ d ≥ e ≥ f ≥ −1.

Consider first the case where U is a single vertex. Setting S = V shows that

C[k, k − 1, 0] = 1 and setting S = ∅ shows that C[0,−1,−1] = 0. For all other

values of x, y, and z, C[x, y, z] = +∞ (meaning there is no such set).

Next consider the case where T [v] and T [w] are both non-empty. In order to

compute all the C values for T ′[v], we must try every combination of C[a, b, c]

for T [v] with every combination of C[d, e, f] for T [w] and, for each combination,

test if C[a, b, c] + C[d, e, f] is less than the current value of C[x, y, z]. If so, we

store it. This complete scheme is given in Algorithm 1.

The minimum number of responders needed to handle any k emergencies in T

is then given at the root by C[k, y, z] for the smallest (lexicographic) pair 〈y, z〉

such that C[k, y, z] 6= +∞. To compute their actual placement, it is sufficient to

maintain pointers for each Cv[x, y, z] to which solutions where used to create the

solution.

13

Algorithm 1 An optimal k-emergency algorithm for trees.

1: procedure k-Emergency(T = (V,E), k)

2: Root T in some vertex r ∈ V

3: for each vertex v ∈ V in postorder do

4: ∀a, b, c : C ′
v[a, b, c] = +∞

5: C ′
v[1, 1, 0] = 1

6: C ′
v[1,−1,−1] = 0

7: for each child w of v do

8: for each Cv[a, b, c] 6= +∞ do

9: for each Cw[d, e, f] 6= +∞ do

10: if b + d + 1 < k then

11: x = min(a + f + 1, c + d + 1, k)

12: y = min(b, d, k − 1)

13: z = min(b, d, f + c + 1, k − 1)

14: if Cv[a, b, c] + Cw[d, e, f] < C ′
v[x, y, z] then

15: C ′
v[x, y, z] = Cv[a, b, c] + Cw[d, e, f]

16: Cv = C ′
v

Since there might be O(k3) C-values for each vertex, it follows that the overall

time complexity of Algorithm 1 is O(nk6). However, for fixed k this is still linear.

5 Proof of Theorem 3.4

The proof of Theorem 3.4 is a computer proof. It uses the ideas introduced

in [4]. The idea is that the table for the dynamic programming algorithm for R3

contains (almost) the complete information about the parameter. So one can use

the table (at least in principle) to calculate the value of the parameter on all trees

of order n. Since we are interested in the minimum value, one can summarize the

values for each n. This summary can be calculated recursively, and eventually a

pattern emerges, which can then be proven by induction to hold for all n.

5.1 The Table for the R3 Algorithm

The first step is to determine which of the properties H[x, y, z] actually arise.

This can be done by starting with the singleton tree with S = ∅ and with S = V .

These two cases have properties H[0,−1,−1] and H[3, 2, 0] respectively.

14

Then repeatedly combine every property for T [v] with every property for

T [w] using Lemma 4.2 (and transitive closure). We call the tree T [v] the parent

and tree T [w] the child , and the tree T ′[v] the composition of the two trees,

denoted comp(T [v], T [w]).

Lemma 5.1 The thirteen properties shown in Figure 5 are the ones that are

actually reachable.

Figure 5 shows the 13 properties for R3, together with a representative tree

for each. (They are given in the order they are generated.) The table shows which

property results when combining the indicated parent (row) and child (column),

where for ease of sight, we have replaced the property by its row/column number.

A dash means that the combination is invalid: it has b + d < k − 1 and fails the

hypothesis of Lemma 4.2. In a tree, a solid vertex indicates a member of S.

Now, a tree together with a subset S of its vertices can be thought of as a

marked tree . The table represents a partition P = {P0, P1, . . . , P13} of the set

of rooted marked trees, where P0 is the impossible class (the markings that no

valid tree can contain). Let πℓ be the set of pairs (i, j) such that combining a

parent tree of class Pi with a child tree of class Pj produces a tree of class Pℓ.

For a given unmarked tree T , define the vector E(T) = (e1, . . . , e13) as follows.

For each class Pi, examine all such markings of T and determine the smallest

number of marked vertices for that class. For example, in our case, e1 is the

minimum number of guards in a set with property H[0,−1,−1].

As in Algorithm 1, this vector can be calculated recursively from the vectors

of the parent and child trees (P and C). Specifically, if T = comp(P,C) with

E(P) = ~x and E(C) = ~y, then

E(T) = comp(~x, ~y) :=

(
min

(i,j)∈πℓ

xi + yj

)13

ℓ=1

.

5.2 From Table to Bound: Theory

Now we want the minimum value of the parameter. For this, we need only

consider the set of all vectors for a given order:

E(n) = {~x : ~x = E(T) for some T with n vertices } .

This set too can be determined recursively:

E(n) = { comp(~x, ~y) : 1 ≤ p < n, ~x ∈ E(p), ~y ∈ E(n − p) }.

15

pa
re

n
t

child

H[0,-1,-1] H[3,2,0] H[1,-1,-1] H[1,0,0] H[3,2,1] H[2,1,-1] H[2,1,0] H[2,1,1] H[3,2,2] H[2,0,0] H[3,-1,-1] H[3,0,0] H[3,1,1]

1 2 3 4 5 6 7 8 9 10 11 12 13

1 – 3 – – 6 – – – 11 – 1 3 6 H[0,-1,-1]

2 4 5 7 8 9 2 5 9 9 5 2 5 9 H[3,2,0]

3 – 6 – – 11 – – – 11 – 3 6 11 H[1,-1,-1]

4 – 10 – – 12 4 10 12 12 10 4 10 12 H[1,0,0]

5 10 9 13 13 9 5 9 9 9 9 5 9 9 H[3,2,1]

6 – 11 – – 11 – – – 11 – 6 11 11 H[2,1,-1]

7 – 13 7 8 13 7 13 13 13 13 7 13 13 H[2,1,0]

8 – 13 8 13 13 8 13 13 13 13 8 13 13 H[2,1,1]

9 12 9 13 13 9 9 9 9 9 9 9 9 9 H[3,2,2]

10 – 12 – – 12 10 12 12 12 12 10 12 12 H[2,0,0]

11 – 11 – – 11 – – – 11 – 11 11 11 H[3,-1,-1]

12 – 12 – – 12 12 12 12 12 12 12 12 12 H[3,0,0]

13 – 13 13 13 13 13 13 13 13 13 13 13 13 H[3,1,1]

F
igu

re
5:

T
h
e

T
ab

le
for

R
3

16

To get it all started, one needs to know E(1) = {E(K1)}. In our case, E(K1) is

(0, 1, ∼ , . . . , ∼) (where ∼ means that there is no valid marking in this class).

Define m(n) as the minimum of R3(T) taken over all trees T of order n. Then

this is given by:

m(n) = min

{
min
i∈π

(~z) : ~z ∈ E(n)

}
,

where π is the set of classes which correspond to a valid marking (all classes of

the form H(3, y, z)).

To determine the function m(n), it is sufficient to replace E(n) with Ẽ(n)

where:

Ẽ(n) is the minimal elements of the set E(n).

Note that Ẽ(n) can be calculated by taking the minimal elements in the set

{ comp(~x, ~y) : 1 ≤ p < n, ~x ∈ Ẽ(p), ~y ∈ Ẽ(n − p) }.

5.3 Actual Calculations

We calculated Ẽ(n) by computer and waited for a pattern. It turns out that

Ẽ(43) and Ẽ(45) both have 54 vectors and are related by a simple shift : that

is, there is a bijection φ between the sets such that ~x and φ(~x) have ∼ in the

same components. Also Ẽ(44) and Ẽ(46) both have 43 vectors and are related

by a simple shift. Further, the “same” simple shift that relates Ẽ(43) and Ẽ(45)

also relates Ẽ(45) and Ẽ(47), and so on.

The proof of Theorem 3.4 is then a proof by induction that this simple shift

pattern continues forever:

Lemma 5.2 (a) m(n) = ⌈(n + 1)/2⌉ for n < 43 except for m(3) = 3.

(b) For n ≥ 43, Ẽ(n) is given by the list given in Figure 6 (by adding ⌈n/2⌉ to

every entry in every vector which is not ∼).

The claim is that the set Ẽ(n) is given by special cases for n ≤ 42 and

a general form for n ≥ 43. The proof is by induction. The proof entails

computationally verifying the result by looking at all combinations of parent and

child. In particular, we need to consider: parent special and child general form;

child special and parent general form; and both parent and child general form.

This requires some computer algebra. In general, one needs to show that any

vector α produced by the join of parent and child is in the envelope given by the

17

min over pi

~.~.~.~.~.~.0.0.2.~.2.3.0. > 0

~.~.~.~.~.~.0.0.3.~.2.2.0. > 0

~.~.~.~.~.1.0.0.2.~.1.1.1. > 1

~.~.~.~.~.1.1.0.2.~.1.~.0. > 0

~.~.~.~.~.2.0.0.1.~.1.2.1. > 1

~.~.~.~.~.2.1.0.3.~.2.2.0. > 0

~.~.~.~.~.3.1.0.2.~.2.3.0. > 0

~.~.~.0.1.~.~.~.1.0.2.0.3. > 0

~.~.0.0.1.0.~.~.1.0.1.1.2. > 1

~.~.0.0.1.1.~.~.2.1.1.1.1. > 1

~.~.1.0.1.1.~.~.1.0.1.1.1. > 1

~.~.1.0.1.1.~.~.1.1.1.0.1. > 0

~.~.1.1.2.~.~.~.1.1.0.0.~. > 0

~.~.1.1.2.0.~.~.1.0.1.1.1. > 1

~.~.1.1.2.1.~.~.1.0.1.0.~. > 0

~.~.1.1.2.2.~.~.1.2.0.0.2. > 0

~.~.2.2.3.2.~.~.1.0.0.0.~. > 0

~.~.3.1.2.3.~.~.1.0.1.0.3. > 0

~.1.~.1.1.~.1.2.1.1.1.1.1. > 1

0.1.0.~.1.0.2.0.1.~.1.~.~. > 1

0.1.0.0.1.0.0.2.1.~.1.~.~. > 1

0.1.0.0.1.1.1.1.2.~.1.~.~. > 1

0.1.0.1.1.0.1.1.1.~.1.~.~. > 1

0.1.0.1.1.1.1.1.1.~.0.~.~. > 0

0.1.0.1.1.1.1.2.2.1.1.2.1. > 1

0.1.0.2.1.0.2.2.1.2.1.3.2. > 1

0.1.1.1.2.0.2.~.1.~.0.~.~. > 0

0.1.1.3.2.0.3.3.1.~.0.~.~. > 0

1.0.1.1.2.1.~.~.1.~.0.~.~. > 0

1.0.1.1.2.2.2.2.1.~.0.~.~. > 0

1.0.2.2.3.0.3.~.1.~.0.~.~. > 0

1.1.1.1.1.1.1.1.1.1.1.2.1. > 1

1.1.1.1.2.0.1.~.1.~.0.~.~. > 0

1.1.1.1.2.1.1.2.1.2.1.1.1. > 1

1.2.0.~.1.0.~.2.1.~.0.~.~. > 0

1.2.0.2.1.1.2.1.2.1.1.2.1. > 1

1.2.0.3.1.0.2.1.1.2.1.3.1. > 1

1.2.1.~.2.1.3.1.2.~.1.~.0. > 0

1.2.1.1.2.1.0.2.2.1.1.1.1. > 1

1.2.1.1.2.1.1.0.2.1.1.1.1. > 1

1.2.1.2.1.1.2.3.1.1.2.1.1. > 1

1.2.1.2.2.0.2.3.1.2.0.2.2. > 0

1.2.1.3.1.0.3.3.1.2.0.2.2. > 0

1.2.2.2.1.0.2.3.1.1.1.1.1. > 1

2.0.2.2.3.0.2.~.1.~.0.~.~. > 0

2.1.2.0.1.1.0.2.1.2.1.1.1. > 1

2.1.2.0.1.1.1.1.2.2.1.1.2. > 1

2.1.2.1.1.2.1.1.1.1.2.1.1. > 1

2.1.2.2.1.1.2.0.1.2.1.2.1. > 1

2.2.2.2.1.1.2.2.1.1.1.1.1. > 1

2.3.1.3.2.1.3.2.1.2.0.3.1. > 0

2.3.2.2.3.2.2.1.3.2.2.2.0. > 0

3.0.3.1.2.2.2.2.1.3.1.2.3. > 0

3.2.3.3.2.2.3.1.2.3.2.3.0. > 0

min over pi

~.~.~.~.~.1.1.1.2.~.1.3.1. > 1

~.~.~.~.~.1.1.1.2.~.2.2.2. > 2

~.~.1.1.2.1.~.~.2.1.1.1.1. > 1

~.~.2.0.1.2.~.~.2.2.1.1.3. > 1

~.1.~.2.1.~.3.3.1.2.2.2.3. > 1

~.2.~.1.2.~.1.3.2.1.2.1.1. > 1

~.2.~.1.2.~.2.2.2.1.2.1.2. > 1

0.1.0.2.1.2.2.2.2.~.1.~.~. > 1

0.1.1.1.2.1.1.2.2.~.1.~.~. > 1

1.1.1.1.1.1.1.1.2.~.1.~.~. > 1

1.1.1.1.2.1.1.~.1.~.1.~.~. > 1

1.2.~.~.2.0.~.~.1.~.2.~.~. > 1

1.2.0.~.1.1.2.1.2.~.1.~.~. > 1

1.2.1.~.1.1.~.~.1.~.2.~.~. > 1

1.2.1.1.2.1.1.2.2.1.1.2.1. > 1

1.2.1.2.2.1.2.1.2.2.2.2.2. > 2

1.2.1.2.2.1.2.2.1.~.2.~.~. > 1

1.2.1.3.2.1.3.1.2.3.1.3.1. > 1

1.2.1.3.2.1.3.3.1.~.1.~.~. > 1

1.2.2.~.1.1.~.~.1.~.1.~.~. > 1

1.2.2.2.3.0.2.~.1.~.2.~.~. > 1

2.1.2.1.2.1.1.2.2.3.1.2.2. > 1

2.1.2.2.1.1.2.2.2.2.1.3.3. > 1

2.2.2.1.2.2.1.1.2.1.2.2.1. > 1

2.2.2.1.2.2.1.3.2.2.2.1.1. > 1

2.2.2.1.2.2.2.2.2.2.2.1.2. > 1

2.3.1.2.2.1.2.1.2.1.1.2.1. > 1

2.3.2.~.1.0.~.~.1.~.3.~.~. > 1

2.3.2.2.2.1.2.4.2.1.1.1.1. > 1

2.3.2.2.2.1.3.3.2.1.1.1.2. > 1

2.3.2.2.3.2.2.2.2.2.2.1.1. > 1

2.3.2.3.3.0.3.3.1.~.3.~.~. > 1

2.3.2.4.3.0.4.4.1.~.2.~.~. > 1

2.3.3.~.1.0.~.~.1.~.2.~.~. > 1

3.1.3.1.1.2.1.1.2.2.2.2.2. > 1

3.1.3.1.2.2.1.~.1.3.2.2.2. > 1

3.1.3.1.2.3.1.3.1.3.2.2.2. > 1

3.2.2.3.1.2.2.1.2.2.1.3.2. > 1

3.2.3.2.2.2.2.2.1.3.2.2.3. > 1

3.2.3.2.3.2.2.4.1.4.1.2.3. > 1

3.2.3.3.1.2.4.4.1.2.1.2.3. > 1

3.4.3.3.4.1.3.3.2.3.1.1.1. > 1

4.3.4.3.3.2.3.3.1.4.1.2.3. > 1

Figure 6: Ẽ(n) for n odd (left) and even (add ⌈n/2⌉ throughout)

18

claimed Ẽ(n). One way to do this by computer is via linear programming, and

show that there is some β in the claimed Ẽ(n) which is component-wise better

than α. At the same time, one needs to verify that every vector in the claimed

Ẽ(n) is in fact achievable. One way to do this by computer is to verify whether

there is an integral solution of α = β.

The software described in [4] produces the table, as shown in Figure 5, as well

as the proof. The proof is, in principle, human checkable, but not in practice!

6 Other Questions

Grids. It can be shown for Pm 2K2 that R2 = ⌈(4m + 2)/5⌉ and r2 = ⌈(2m +

2)/3⌉. But what is the behavior in general?

One can also consider multiple emergencies and multiple responders. One

possibility is to allow double emergencies at the same vertex, but not allow double

responders: this is equivalent to double domination [6] (not to be confused with 2-

domination). Another possibility is to allow both double emergencies and double

responders at the same vertex. This is a sort of Roman domination [3] extension.

References

[1] M. W. Bern, E. L. Lawler, and A. L. Wong. Linear-time computation of

optimal subgraphs of decomposable graphs. J. Algorithms, 8(2):216–235,

1987.

[2] E. J. Cockayne, B. Gamble, and B. Shepherd. An upper bound for the k-

domination number of a graph. J. Graph Theory, 9(4):533–534, 1985.

[3] Ernie J. Cockayne, Paul A. Dreyer, Jr., Sandra M. Hedetniemi, and

Stephen T. Hedetniemi. Roman domination in graphs. Discrete Math., 278(1-

3):11–22, 2004.

[4] Wayne Goddard. Automated bounds on recursive structures. Submitted.

[5] Wayne Goddard, Sandra M. Hedetniemi, and Stephen T. Hedetniemi. Eternal

security in graphs. J. Combin. Math. Combin. Comput., 52:169–180, 2005.

[6] Frank Harary and Teresa W. Haynes. Double domination in graphs. Ars

Combin., 55:201–213, 2000.

19

[7] Petter Kristiansen, Sandra M. Hedetniemi, and Stephen T. Hedetniemi. Al-

liances in graphs. J. Combin. Math. Combin. Comput., 48:157–177, 2004.

[8] T. V. Wimer and S. T. Hedetniemi. K-terminal recursive families of graphs.

Congr. Numer., 63:161–176, 1988. 250th Anniversary Conference on Graph

Theory (Fort Wayne, IN, 1986).

20

