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Abstract

A graph is well-dominated if all its minimal dominating sets have the same
cardinality. In this paper we prove that at least one factor of every connected,
well-dominated Cartesian product is a complete graph, which then allows us
to give a complete characterization of the connected, well-dominated Cartesian
products if both factors have order at least 2. In particular, we show that G�H
is well-dominated if and only if G�H = P3�K3 or G�H = Kn�Kn for some
n ≥ 2.
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1 Introduction

A minimal dominating set in any finite graph can be found in linear time by pro-
cessing its vertices sequentially and retaining only those vertices that are needed to
dominate the graph. The invariant of interest in most applications is the domination
number of the graph, and the related decision problem is a well-known NP-complete
problem [4]. The class of well-dominated graphs, introduced by Finbow, Hartnell, and
Nowakowski [3], are those for which every minimal dominating set has the same cardi-
nality. Thus, a graph is well-dominated if and only if the simple algorithm described
above always produces a dominating set of minimum cardinality. The structure of
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well-dominated graphs is far from being known, but the collection of connected, well-
dominated graphs within several classes of graphs have recently been determined. This
list includes bipartite [3], girth larger than 4 [3], simplicial and chordal [11], and graphs
without cycles of length 4 or 5 [10]. In addition, a characterization has been given of
the well-dominated graphs within the classes of direct products [12], lexicographic
products [5], and disjunctive products [1]. Several subclasses of well-dominated strong
products and Cartesian products have also been exhibited.

In the initial attempt to determine the well-dominated Cartesian products, An-
derson, Kuenzel and Rall [1] characterized the nontrivial, well-dominated Cartesian
products when both factors are triangle-free.

Theorem 1. ([1, Theorem 2]) Let G and H be nontrivial, connected graphs both of
which have girth at least 4. The Cartesian product G�H is well-dominated if and only
if G = H = K2.

The same paper by Anderson, et al. included the following result.

Theorem 2. ([1, Theorem 1]) Let G and H be connected graphs. If the Cartesian
product G�H is well-dominated, then G or H is well-dominated.

However, in a private communication, Erika King and Michael O’Grady [9] pointed
out a logical gap in the proof of Theorem 2.

Rall [12] determined the connected, well-dominated Cartesian products when one
of the factors is a complete graph of order at least 2. In particular, he proved the
following result.

Theorem 3. ([12, Theorem 3]) Let m be a positive integer with m ≥ 2 and let H be a
nontrivial, connected graph. The Cartesian product Km�H is well-dominated if and
only if either m 6= 3 and H = Km or m = 3 and H ∈ {P3, K3}.

In addition, he conjectured that every nontrivial, connected and well-dominated Carte-
sian product has a complete graph as a factor. Our main result in this paper is the
following theorem that proves this conjecture and thus verifies Theorem 2.

Theorem 4. If G�H is connected and well-dominated, then G or H is a complete
graph.

Applied together with Theorem 3, this completes the characterization of the class of
nontrivial, connected, well-dominated Cartesian products.

In Section 2 we supply necessary definitions and provide additional background re-
sults in the study of well-dominated Cartesian products. In addition, we prove several
preliminary lemmas that will be used in our proof of the main theorem. Section 3 is
devoted to proving Theorem 4.
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2 Definitions and Preliminary Results

In this paper we restrict our attention to finite, simple graphs. We say a graph G is
nontrivial if its order, denoted by n(G), is at least 2, and a Cartesian product is said
to be nontrivial if both factors are nontrivial. In general we follow the definitions and
notation of the book by Haynes, Hedetniemi and Henning [8]. For a positive integer
n, the set {1, . . . , n} will be denoted by [n]. If g is a vertex in a graph G, the set of
vertices adjacent to g is denoted by NG(g) and is called the open neighborhood of g.
The closed neighborhood of g is the set NG[g] defined by NG[g] = NG(g) ∪ {g}. For
a set S ⊆ V (G), the open neighborhood of S is defined by NG(S) = ∪g∈SNG(g) and
its closed neighborhood is the set NG[S] = NG(S) ∪ S. We will omit the subscript on
these neighborhood set names if the graph is clear from the context. A dominating set
of G is a subset S of the vertex set of G such that N [S] = V (G). A dominating set S is
minimal if S − {x} does not dominate G for every x ∈ S. This condition is equivalent
to requiring N [x]−N [S −{x}] 6= ∅ for every x ∈ S. When N [u]−N [A−{u}] 6= ∅ for
a vertex u ∈ A, we say that u has a private neighbor with respect to A. When the set A
is clear from the context we may simply say that u has a private neighbor. If this is the
case for each u in A, then we say that A is irredundant. If A is irredundant, then some
of the private neighbors of a vertex u ∈ A might belong to A (when N(u)∩A = ∅) and
others might belong to V (G) − A. If A is an irredundant set and every vertex u ∈ A
has a private neighbor with respect to A that does not belong to A, then we say A is
open irredundant. A set I ⊆ V (G) is independent if no pair of distinct vertices in I are
adjacent.

The domination number of G is the cardinality of a smallest dominating set of G
and is denoted γ(G). A dominating set D of G with |D| = γ(G) is called a γ(G)-set.
The vertex independence number of G is the cardinality of a largest independent set
in G and is denoted α(G). A set I ⊆ V (G) is called a α(G)-set if I is independent
and has cardinality α(G). The graph G is said to be well-dominated if all of its
minimal dominating sets have cardinality γ(G), and G is well-covered if all of its
maximal independent sets have cardinality α(G). One can greedily add vertices to any
independent set in G to enlarge it to a maximal independent set. It follows that in a
well-covered graph G any independent set is a subset of an α(G)-set. It is clear from
the definition that a maximal independent set in G is a minimal dominating set of G.
Consequently, a graph that is well-dominated is also well-covered.

If A is a nonempty set, then a collection of pairwise disjoint subsets of A whose union
is A is called a weak partition of A. Let X and Y be graphs. The Cartesian product,
X �Y , is the graph whose vertex set is V (X)×V (Y ). Two vertices (x1, y1) and (x2, y2)
are adjacent in X �Y if they are equal in one coordinate and adjacent in the other
coordinate. The Cartesian product is associative, commutative and distributes over
disjoint unions. For a fixed vertex x ∈ V (X), the set {(x, y) | y ∈ V (Y )} is called a
Y -layer. Each Y -layer induces a subgraph of X �Y that is isomorphic to Y . Similarly,
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for a fixed vertex y in V (Y ), the set {(x, y) |x ∈ V (X)} is called a X-layer, and it
induces a subgraph isomorphic to X.

We now list some preliminary results that will prove useful in the remainder of the
paper. Note that if I is an independent set in a graph X, then I ∪ D is a minimal
dominating set of X for every minimal dominating set D of X − N [I]. This implies
the following observation as noted by Finbow, Nowakowski and Hartnell [3].

Observation 1. ([3]) If X is a well-dominated graph and I is an independent set of
X, then X −N [I] is well-dominated.

It is clear that the Cartesian product of two connected graphs is itself connected.
Also, since the Cartesian product distributes over disjoint unions, we get the following
useful fact.

Observation 2. If X �Y is connected, then X and Y are connected.

The following observation follows directly from the definitions.

Observation 3. A graph is well-dominated if and only if each of its components is
well-dominated.

Although the well-covered Cartesian products have not been characterized, Hartnell
and Rall reduced the characterization in the following result.

Theorem 5. ([6]) If G and H are graphs such that G�H is well-covered, then at
least one of G or H is well-covered.

Since a graph is well-covered if it is well-dominated, we will use Theorem 5 to infer
that at least one of the factors of a well-dominated Cartesian product is well-covered.

The following lemma established by Hartnell, Rall and Wash will be used to show
that the Cartesian product of two triangle-free connected graphs is not well-dominated
if both have order at least 3.

Lemma 1. ([7, Lemma 4]) If G and H are connected graphs both having order at least
3 and girth at least 4, then G�H is not well-covered.

Bollobás and Cockayne [2] showed that every connected graph has a minimum dom-
inating set that is open irredundant. Using this fact, Rall proved the following propo-
sition by showing that D× V (Y ) is a minimal dominating set of X �Y for any graph
Y if D is an open irredundant dominating set of X.

Proposition 1. ([12, Proposition 16]) Let X and Y be nontrivial connected graphs.
If X �Y is well-dominated, then γ(X �Y ) = γ(X)n(Y ) = γ(Y )n(X).
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The method we will use to prove Theorem 4 involves assuming that G�H is a mini-
mal counterexample. By removing the closed neighborhood of a maximal independent
set in G�H, we then will analyze the Cartesian product of smaller factors that may
be disconnected. To determine the structure of these product graphs we need the
following three lemmas.

Lemma 2. Let X be a connected graph of order at least 3. If P3�X is well-dominated,
then X = K3.

Proof. Let V (P3) = {a, b, c} with deg(b) = 2, and suppose P3�X is connected and
well-dominated. It is clear that the set {b} × V (X) is a minimal dominating set of
P3�X, and thus γ(P3�X) = n(X). Since P3�X is well-covered, we infer that X
contains a triangle by applying Lemma 1. Suppose first that X contains a vertex x of
degree at least 3. Let

S = ({a, b, c} × {x}) ∪ ({b} × (V (X)−NX [x])) .

It is easy to see that S dominates P3�X. Also, |S| = 3+n(X)− (deg(x)+1) < n(X).
This is a contradiction. Therefore, ∆(X) ≤ 2, and this implies that X = K3.

Lemma 3. Let X be a connected graph of order at least 3 and let r and s be positive
integers. If 2 ≤ r ≤ s or if r = 1 and s ≥ 3, then Kr,s�X is not well-dominated.

Proof. Suppose to the contrary that there exists some connected graph X with order
at least 3 such that Kr,s�X is well-dominated. Label the vertices of the two partite
sets of Kr,s as {a1, . . . , ar} and {b1, . . . , bs}.

Assume first that 2 ≤ r ≤ s. Let DX be any minimal dominating set of X. Since X
is connected and has order at least 3, it follows that V (X)−DX is also a dominating
set of X. We claim that

D1 = ({a1} × (V (X)−DX)) ∪ ({a2, . . . , ar} ×DX)

is a minimal dominating set of Kr,s�X. Let (u, x) ∈ V (Kr,s�X) − D1. If x ∈
V (X)−DX and u 6∈ {a2, . . . , ar}, then (u, x) is dominated by (a1, x). If x ∈ V (X)−DX

and u = ai for 2 ≤ i ≤ r, then (u, x) is dominated by (ai, x
′) for some x′ ∈ DX . If

x ∈ DX and u 6= a1, then (u, x) is dominated by (a2, x). If x ∈ DX and u = a1,
then (u, x) is dominated by (a1, x

′) for some x′ ∈ V (X) − DX since V (X) − DX is a
dominating set of X. Thus, D1 is in fact a dominating set of Kr,s�X. To show that
D1 is a minimal dominating set of Kr,s�X we will show that each vertex in D1 has a
private neighbor with respect to D1. For any x ∈ V (X) −DX , the vertex (b1, x) is a
private neighbor of (a1, x) with respect to D1. Each vertex of {a2, . . . , ar} ×DX has a
private neighbor with respect to D1 in its X-layer since DX is a minimal dominating
set of X and {a1, . . . , ar} is an independent set in Kr,s. Therefore, D1 is a minimal
dominating set of Kr,s�X of cardinality n(X) + (r − 2)|DX |.
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One can easily verify that D2 = {a1, b1} × V (X) is a minimal dominating set of
Kr,s�X. Since Kr,s�X is well-dominated, it follows that

n(X) + (r − 2)|DX | = |D1| = |D2| = 2n(X) ,

and hence (r − 2)|DX | = n(X). Since DX is an arbitrary minimal dominating set of

X, this implies that X is well-dominated and γ(X) = n(X)
r−2 . By Proposition 1,

γ(Kr,s�X) = γ(Kr,s)n(X) = γ(X)n(Kr,s) =
r + s

r − 2
n(X) ,

which implies that r = s+4. This contradiction shows that if 2 ≤ r ≤ s, then Kr,s�X
is not well-dominated.

Finally, suppose r = 1 and s ≥ 3 and let DX be an α(X)-set. Using arguments
similar to those above, it follows that both {a1} × V (X) and ({b1} × (V (X)−DX))∪
({b2, . . . , bs} ×DX) are minimal dominating sets of K1,s�X. Therefore,

n(X) = n(X)− |DX |+ (s− 1)|DX |,

which implies s = 2, another contradiction.

Finally, we identify one more class of Cartesian products that are not well-dominated.
Let F1 denote the class of all graphs of order at least 4 obtained by attaching some
finite number of leaves to the vertices of a complete graph of order 3. Let F2 be the
class of all graphs of order at least 5 constructed from a complete graph of order 4 by
attaching some finite number of leaves to at most three of its vertices.

Lemma 4. Let F1 ∈ F1 and let F2 ∈ F2. If X is any connected graph of order 3 or
more, then neither F1�X nor F2�X is well-dominated.

Proof. Suppose for the sake of obtaining a contradiction that F1�X is well-dominated.
Let y1, y2 and y3 be the vertices of F1 that have degree at least 2. We let Li represent
the set of leaves adjacent to yi for i ∈ [3] and let DX be a minimum dominating set of
X. By the definition of F1, at least one of y1, y2, y3 is adjacent to a leaf. The argument
is divided into three parts depending on how many of the sets L1, L2, L3 are nonempty.

Suppose first that Li 6= ∅ for every i ∈ [3]. Note that {y1, y2, y3} is an open irre-
dundant dominating set of F1 and therefore D1 = {y1, y2, y3} × V (X) is a minimal
dominating set of F1�X. Next, consider D2 = ({y1} × V (X)) ∪ ((L2 ∪ L3) × DX).
We claim that D2 is a minimal dominating set of F1�X. To see this, note that (g, h)
is dominated by (y1, h) if h ∈ V (X) and g 6∈ L2 ∪ L3. If g ∈ L2 ∪ L3, then (g, h) is
dominated by some (g, h′) where h′ ∈ DX . Moreover, (x, h) is a private neighbor of
(y1, h) where x ∈ L1 and each vertex of (L2 ∪ L3) ×DX has a private neighbor in its
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X-layer since L2 ∪ L3 is an independent set in F1. Since F1�X is well-dominated, it
follows that

3n(X) = |D1| = |D2| = n(X) + (|L2|+ |L3|)|DX |.

Furthermore, D′2 = ({y2} × V (X)) ∪ ((L1 ∪ L3) × DX) and D′′2 = ({y3} × V (X)) ∪
((L1∪L2)×DX) are also minimal dominating sets of F1�X. Thus, |L1| = |L2| = |L3|.
Therefore, 3n(X) = n(X) + 2|L1||DX | = n(X) + 2|L1|γ(X) from which it follows that
n(X)/γ(X) = |L1|. On the other hand, since γ(F1) = 3, it follows by Proposition 1 that
γ(X)n(F1) = γ(F1)n(X) = 3n(X), or equivalently, n(X)/γ(X) = n(F1)/3. Hence,

|L1| =
n(X)

γ(X)
=
n(F1)

3
= |L1|+ 1,

which is clearly a contradiction. Therefore, this case cannot occur.

Next, suppose that L1 = ∅ and Li 6= ∅ for i ∈ {2, 3}. Note that A1 = ({y2} ×
V (X)) ∪ (L3 × DX), A2 = ({y1} × (V (X) − DX)) ∪ ((L2 ∪ L3) × DX), and A3 =
({y3} × V (X)) ∪ (L2 × DX) are all minimal dominating sets of F1�X. Therefore,
using calculations similar to the first case above, we get |A1| = |A2|, meaning |L2| = 1
and similarly, |L3| = 1. However, {y2, y3} × V (X) is also a minimal dominating set
and now

n(X) + |DX | = |A1| = 2n(X)

which cannot be for any nontrivial connected graph X.

Finally, assume L1 = L2 = ∅ and L3 6= ∅. As above, we know {y3} × V (X) and
({y2} × V (X)) ∪ (L3 ×DX) are minimal dominating sets of F1�X. It follows that

n(X) = n(X) + |L3||DX | ,

which implies |L3| = 0, another contradiction. Therefore, F1�X is not well-dominated.

Now suppose there exists a connected graph X or order at least 3 such that F2�X
is well-dominated. Next, let {y1, y2, y3, y4} induce a complete subgraph of F2 and let
deg(y4) = 3. Let Li be the set of leaves adjacent to yi for i ∈ [3] and let DX be a
minimum dominating set of X.

Suppose first that Li 6= ∅ for i ∈ [3]. Note that {y1, y2, y3} is an open irredundant set
of F2 and therefore D1 = {y1, y2, y3}×V (X) is a minimal dominating set of F2�X. By
an argument similar to the first case above when we were analyzing F1�X, it follows
that |L1| = |L2| = |L3|, n(X)/γ(X) = |L1|, and n(X)/γ(X) = n(F2)/3. Hence,

|L1| =
n(X)

γ(X)
=
n(F2)

3
=

4 + 3|L1|
3

= |L1|+
4

3
,

which is clearly a contradiction. Therefore, this case cannot occur.
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Next, suppose that L1 = ∅ and Li 6= ∅ for i ∈ {2, 3}. Note that ({y1} × V (X)) ∪
((L2 ∪ L3) ×DX) and ({y3} × V (X)) ∪ (L2 ×DX) are both minimal dominating sets
of F2�X. This implies that |L3| = 0, which is a contradiction.

Therefore, we may assume L1 = L2 = ∅ and L3 6= ∅. It follows that {y3} × V (X)
and ({y2}× V (X))∪ (L3×DX) are minimal dominating sets of F2�X, which implies
L3 = ∅. This final contradiction completes the proof.

3 The Characterization

In this section we prove Theorem 4, which is restated below for the reader’s convenience.
A fact that we will use a number of times is the following.

Observation 4. If IG is a maximal independent set in G and IH is a maximal inde-
pendent set in H, then IG × IH is independent in G�H and

G�H −NG�H [IG × IH ] = (G− IG)� (H − IH) .

If in addition G�H is well-dominated, then by Observation 1 it follows that (G −
IG)� (H − IH) is well-dominated.

Theorem 4 If G�H is connected and well-dominated, then G or H is a complete
graph.

Proof. Suppose to the contrary that there exists a connected, well-dominated Cartesian
product G�H such that neither G nor H is a complete graph. By Observation 2, both
G and H are connected. Among all such counterexamples, choose one where the order
of G�H is minimal. Since G�H is also well-covered, it follows from Theorem 5 that
at least one of G or H is well-covered. Without loss of generality, we assume that G is
well-covered. Moreover, by Lemma 2 we may assume that G and H each have order
at least 4. Let IG be any maximal independent set of G and let IH be any maximal
independent set of H. By Observation 4, (G − IG)� (H − IH) is well-dominated.
To simplify notation we will let G′ = G − IG and H ′ = H − IH . By Observation 3
and the choice of G�H, the conclusion of the theorem holds for each component of
G′�H ′. In particular, let G1, . . . , G` be the components of G′ and let H1, . . . , Hn be
the components of H ′. Thus, for each (i, j) ∈ [`] × [n], Gi or Hj is a complete graph.
Furthermore, by Theorem 3 this implies that if the orders of Gi and Hj are both at
least 2, then Gi�Hj is isomorphic to Km�Km for some m ≥ 2 or to P3�K3.

We claim that we need not consider the case when all components of H ′ are isolated
vertices. For suppose IH is a maximal independent set such that H ′ = H− IH consists
entirely of isolated vertices. This implies that H is bipartite. Since G is connected
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and G and H both have order at least 4, it follows by Lemma 3 that H is not a
complete bipartite graph, which allows us to select a maximal independent set J in
H so that H − J contains an edge. Thus we may assume IH has been chosen so that
H ′ = H − IH contains a nontrivial component. Similarly, we may assume that the
maximal independent set IG of G has been chosen so that G′ = G − IG contains a
nontrivial component.

By Theorem 3 it follows that each component of H ′ is either K1, P3, or Km for some
m ≥ 2. The argument is now split into four cases depending on the components of H ′.

Case 1. [H ′ has P3 as a component.]

By Lemma 2, every component of G′ is a complete graph of order 3. Furthermore,
if I is any maximal independent set of G, then every component of G− I is complete
of order 3. For each i ∈ [`] let V (Gi) = {xi1, xi2, xi3}. Let i ∈ [`]. Extend {xi1} to a
maximal independent set I of G. The edge xi2x

i
3 is in the graph G− I, which implies

that there is a vertex v ∈ V (G−I) such that {vxi2, vxi3} ⊆ E(G). Note that v ∈ IG, for
otherwise the subgraph of G induced by {xi1, xi2, xi3, v} is a subgraph of G − IG. Now
extend {xi2} to a maximal independent set I ′ of G. Since {xi1xi3, vxi3} ⊆ E(G − I ′),
we infer that vxi1 ∈ E(G). Therefore, for every i ∈ [`], there exists yi ∈ IG such that
{yi, xi1, xi2, xi3} induces a complete graph of order 4 in G. Note that we have also proved
here that if a vertex of IG is adjacent to two vertices of a triangle in G, then it is also
adjacent to the other vertex of the triangle. (See the argument for v.)

We claim that G = K4. To see this, note that since G is connected, there exists a
path from x11 to x21. Suppose first that for some i ∈ {2, . . . , `}, j ∈ [3], and k ∈ [3] that
x1j is adjacent to some vertex z ∈ IG − {y1} and z is also adjacent to xik. Reindexing
if necessary, we may assume j = k = 1. Extend {x12, xi1} to a maximal independent
set I1 of G. Now the set {y1, x11, x13, z} belongs to a single component of G− I1, which
is a contradiction. Therefore, if w ∈ (IG − {y1}) ∩ N(V (G1)), then N(w) ⊆ V (G1).
Next, suppose y1 has a neighbor xik for some k ∈ [3] and i ∈ {2, . . . , `}. Reindexing if
necessary, we may assume k = 1 and i = 2. Extend {x11, x22} to a maximal independent
set I2 of G. Now the set {x12, x13, y1, x21} belongs to a single component of G − I2,
another contradiction. It follows that NG[y1] = V (G1) ∪ {y1} and G = K4. This is a
contradiction.

Case 2. [Some component of H ′ is a complete graph of order m for some
m ≥ 4.]

Applying Theorem 3 we see that each component of G′ is either an isolated vertex or
a complete graph of order m. Furthermore, by our choice of the maximal independent
set IG, at least one component of G′ is isomorphic to Km.

Subcase 2.1. [G′ contains an isolated vertex.]
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We write G′ = G1 ∪ · · · ∪ Gα ∪ Gα+1 ∪ · · · ∪ G` where Gi = K1 for i ∈ [α] and
Gi = Km for α + 1 ≤ i ≤ `. For each i with α + 1 ≤ i ≤ `, let V (Gi) = {xi1, . . . , xim}
and let V (Gj) = {xj1} for 1 ≤ j ≤ α. Let J be the maximal independent set of G

defined by J = C ∪
⋃`
i=1{xi1} where C = IG −NG[∪`i=1{xi1}]. Since G is well-covered,

|J | = |IG|, which implies ` ≤ |IG|. Using the same argument as above G′′ = G − J
is the disjoint union of components each of which is either K1 or Km. Note that
IG−C ⊆ V (G)−J = V (G′′). It follows that each vertex x ∈ IG−C is either an isolate
in G′′ or x is adjacent to every vertex in V (Gi)− {xi1} for some α+ 1 ≤ i ≤ ` and x is
not adjacent to any vertex of V (Gj)− {xj1} for every j ∈ {α + 1, . . . , `} − {i}.

Let {YG, ZG,MG} be the weak partition of IG defined as follows.

• YG is the set of all g ∈ IG such that V (Gi) ∪ {g} induces in G a complete graph
(of order m+ 1) for some i with α + 1 ≤ i ≤ `,

• ZG is the set of all g ∈ IG that are isolated in G′′, and

• MG = IG − (YG ∪ ZG).

First we claim that |YG| = ` − α. Let i be an index with α + 1 ≤ i ≤ `. Since each
component of G′′ is either K1 or Km and the subgraph of G′′ induced by V (Gi)−{xi1}
is a complete graph of order m − 1, we see that there exists a vertex y ∈ IG that is
adjacent to every vertex in V (Gi) − {xi1} and is not adjacent to any other vertex in
G′′. Suppose y is not adjacent to xi1. Extend {xi2} to a maximal independent set I
of G. In G − I the set (V (Gi) − {xi2}) ∪ {y} induces a subgraph of order m that is
not a complete graph. This is a contradiction, and thus y ∈ YG. This also shows that
|YG| ≥ ` − α. Furthermore, suppose there exist distinct vertices u and v in YG such
that V (Gj) ⊆ NG(u)∩NG(v) for some α+ 1 ≤ j ≤ `. By enlarging {xj1} to a maximal
independent set I ′ of G, we see that u and v belong to a component of order m+ 1 of
G− I ′. This contradiction shows that |YG| ≤ `−α. We thus denote YG as {y1, . . . , yt},
where t = `− α and such that V (Gα+i) ⊆ NG(yi) for each 1 ≤ i ≤ t.

Next, we claim that MG ⊆ C. To see this, suppose x ∈MG. Then, x is not isolated
in G′′, and it follows that x is adjacent to a vertex xij for some 2 ≤ j ≤ m and some
α + 1 ≤ i ≤ ` since G is connected. Reindexing if necessary, we may assume x is
adjacent to xα+1

2 . Since x 6∈ YG, there exists k ∈ [m] − {2} such that xxα+1
k 6∈ E(G).

Suppose x is adjacent to a vertex in V (Gα+1)− {xα+1
2 }. When we extend {xα+1

2 } to a
maximal independent set I of G, the set (V (Gα+1) − {xα+1

2 }) ∪ {x} is contained in a
component that is complete, which implies x is adjacent to every vertex of V (Gα+1),
a contradiction. Thus, x is not adjacent to xα+1

1 . Moreover, if x is adjacent to xm1 for
some m ∈ [`] − {α + 1}, then when we extend {xα+1

3 , xm1 } to a maximal independent
set I, there exists a component in G− I containing {x} ∪ (V (Gα+1)− {xα+1

3 }), which
is a contradiction. Thus, x ∈ IG −NG[∪`i=1{xi1}] = C.
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Let Q2 = (
⋃α
i=1{xi1}) ∪

(⋃`
i=α+1{xi2}

)
and let M2 = IG − NG[Q2]. The set Q2 is

independent and the set T2 defined by T2 = M2 ∪Q2 is a maximal independent set of
G. Let G′′′ = G − T2. Recall that H ′ has a component isomorphic to Km. Using the
same argument as above, we see that each component of G′′′ is a complete graph of
order 1 or m, and at least one of these components has order m since xα+1

1 xα+1
3 is an

edge in G′′′.

Suppose ZG 6= ∅. Let z ∈ ZG. Since z is an isolate in G′′, it follows that z is not
adjacent in G to any vertex in V (Gk)−{xk1}, for α+1 ≤ k ≤ `. Also, z is not adjacent
in G to xk1 for any k with α + 1 ≤ k ≤ ` since z is not adjacent to xk3, for otherwise
z is contained in a component of G′′′ that is not a complete graph of order m. Thus,
NG(z) ⊆ {x11, . . . , xα1}.

Since G is connected, there is a path in G from z to yi for each i ∈ [t]. Without loss
of generality we may assume that a shortest such path, say P , is a z, y1-path. Recall,
as we proved above, that MG ⊆ C, which implies that NG(v) ∩ (∪`i=1{xi1}) = ∅ for
every v ∈MG. Recall also that NG(z) ⊆ {x11, . . . , xα1}. From this we infer that

V (P ) ⊆ {y1} ∪ ZG ∪ {x11, . . . , xα1} .

Reindexing {x11, . . . , xα1} if necessary, we may assume without loss of generality that
y1x

1
1 and z′x11 are both edges of G for some z′ ∈ ZG. Since NG(z′) ⊆ {x11, . . . , xα1},

expand the independent set {z′, xα+1
2 } to a maximal independent set I of G. Now we

see that {x11, y1} ∪ (V (Gα+1) − {xα+1
2 }) does not induce a complete graph of order m

in G− I. This is a contradiction, and therefore ZG = ∅. As a result

|IG| = |YG|+ |MG| ≤ `+ |MG| ≤ `+ |C| = |J | = |IG|.

This implies that |YG| = `, which in turn implies that G′ has no isolated components.
This contradicts our assumption.

Subcase 2.2. [Every component of G′ is a complete graph of order m.]

Since G is well-covered,

|M2|+ ` = |M2|+ |Q2| = |T2| = |IG| = |MG|+ `.

Thus, |M2| = |MG|. Moreover, M2 ⊆ MG as each vertex w in M2 is not adjacent to
any vertex of the form xk2 for k ∈ [`] and so w /∈ YG. It follows that MG = M2. In fact,
if for 3 ≤ j ≤ m we define

Qj =
⋃̀
i=1

{xij} and Mj = IG −NG[Qj],

then Tj = Mj∪Qj is a maximal independent set of G from which - as we did above - we
may conclude that Mj = MG. That is, MG consists of vertices which are not adjacent
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to any vertex of G1∪· · ·∪G`. Since G is connected, it follows that MG = ∅. Moreover,
we know from above that yi cannot have a neighbor in Gα+j when i 6= j. Therefore, IG
consists of a single vertex adjacent to every vertex in G′. That is, G = Km+1, which
contradicts the choice of G�H.

Case 3. [Some component of H ′ is K3.]

We may assume that for every maximal independent set I of H the graph H−I does
not contain a component isomorphic to a path of order 3 or a complete graph of order
at least 4, for otherwise we are in Case 1 or Case 2. Since H ′ contains a K3, it follows
from Theorem 3 that every component of G′ is either K1, K3, or P3. Furthermore, by
the choice of IG, at least one component of G′ is nontrivial. By Theorem 3 we infer
that no component of H ′ is K2.

Subcase 3.1. [H ′ contains an isolated vertex.]

We write H ′ = H1 ∪ · · · ∪ Hσ ∪ Hσ+1 ∪ · · · ∪ Hn where Hi = K1 for i ∈ [σ] and
Hi = K3 for σ + 1 ≤ i ≤ n. For each i with σ + 1 ≤ i ≤ n, let V (Hi) = {xi1, xi2, xi3}
and let V (Hj) = {xj1} for 1 ≤ j ≤ σ. The set J defined by J = C ∪

⋃n
i=1{xi1}, where

C = IH−NH [∪ni=1{xi1}], is a maximal independent set in H. Using the same argument
as above, the components of H ′′ = H − J are each complete graphs of order 1 or 3
and at least one of these components has order 3 since xσ+1

2 xσ+1
3 is an edge in H ′′. It

follows that each vertex u ∈ IH −C is either an isolate in H ′′ or u is adjacent to every
vertex in V (Hi)− {xi1} for some σ + 1 ≤ i ≤ n and u is not adjacent to any vertex of
V (Hj)− {xj1} for every j ∈ {σ + 1, . . . , n} − {i}.

Let {YH , ZH ,MH} be the weak partition of IH defined as follows.

• YH is the set of vertices h in IH such that V (Hi)∪{h} induces a complete graph
of order 4 in H for some σ + 1 ≤ i ≤ n,

• ZH is the set of vertices in IH that are isolated in H ′′, and

• MH = IH − (YH ∪ ZH).

First we claim that YH 6= ∅. To see this, recall that H ′′ has a component isomorphic
to K3 and every nontrivial component of H ′′ is a complete graph of order 3. For each
i ∈ [n]− [σ], the vertices xi2 and xi3 are adjacent in H ′′, and thus there exists a vertex
y ∈ IH that is adjacent to both xi2 and xi3. Suppose y is not adjacent to xi1. Extend
{xi2} to a maximal independent set I of H. In H − I the set {y, xi1, xi3} induces a path
of order 3. This is a contradiction, and the claim is established. Moreover, this shows
that for each σ + 1 ≤ i ≤ n, there exists y ∈ IH such that V (Hi) ∪ {y} induces a
complete graph of order 4 in H. Hence, |YH | ≥ n − σ. By definition every vertex in
YH is in H ′′. Since each component of H ′′ is a complete graph of order 3 or an isolated
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vertex, |YH | = n − σ. We thus denote YH as {y1, . . . , yt}, where t = n − σ and such
that V (Hσ+i) ⊆ NH(yi) for each 1 ≤ i ≤ t.

Let Q2 = (
⋃σ
i=1{xi1}) ∪

(⋃n
i=σ+1{xi2}

)
and let M2 = IH − NH [Q2]. The set Q2 is

independent and the set T2 defined by T2 = M2 ∪Q2 is a maximal independent set in
H. Let H ′′′ = H − T2. Recall that G′ has a component isomorphic to K3 or P3. Using
the same argument as above, we see that each component of H ′′′ is a complete graph
of order 1 or 3, and at least one of these components is isomorphic to K3.

We claim that NH(MH) ∩ {x11, . . . , xσ1} = ∅. Suppose this is not the case, and let
x ∈ MH such that x has a neighbor, say xs1, where s ∈ [σ]. Since x is not isolated
in H ′′, there exists a neighbor of x in ∪ni=σ+1{xi2, xi3}. Without loss of generality we
assume xxσ+1

2 ∈ E(H). Since x /∈ YH , there exists k ∈ {1, 3} such that xxσ+1
k /∈

E(H). Let I ′ be a maximal independent set of H that contains {xs1, xσ+1
k }. Then

{x, y1} ∪ (V (Gσ+1) − {xσ+1
k }) belongs to a component of order at least 4 in H − I ′,

which is a contradiction. Therefore, NH(MH) ∩ {x11, . . . , xσ1} = ∅.

Suppose ZH 6= ∅. Let z ∈ ZH . Since z is an isolate in H ′′, it follows that z is not
adjacent in H to any vertex in V (Hk)−{xk1}, for σ+1 ≤ k ≤ n. Also, z is not adjacent
in H to xk1 for any k with σ + 1 ≤ k ≤ n since z is not adjacent to xk3, for otherwise
z is contained in a component of H ′′′ that is not a complete graph of order 3. Thus,
NH(z) ⊆ {x11, . . . , xσ1}.

Since H is connected, there is a path in H from z to yi for each i ∈ [t]. Without loss
of generality we may assume that a shortest such path, say P , is a z, y1-path. Recall
from above that NH(MH) ∩ {x11, . . . , xσ1} = ∅. Recall also that NH(z) ⊆ {x11, . . . , xσ1}.
From this we infer that

V (P ) ⊆ {y1} ∪ ZH ∪ {x11, . . . , xσ1} .

Reindexing {x11, . . . , xσ1} if necessary, we may assume without loss of generality that
y1x

1
1 and z′x11 are both edges of H for some z′ ∈ ZH . Since z′ is not adjacent to all

the vertices of Hσ+1 we can expand {z′, xσ+1
j } to a maximal independent set I of H

for some xσ+1
j /∈ NH(z′). We now infer that {x11, y1} ∪ (V (Hσ+1) − {xσ+1

j }) induces a
subgraph of order 4 in H − I. This is a contradiction, and therefore ZH = ∅.

We claim that if MH 6= ∅, then each vertex in MH has exactly one neighbor in H and
that neighbor belongs to ∪ni=σ+1{xi2, xi3}. Suppose there exists h ∈ MH . Recall that
NH(h)∩{x11, . . . , xσ1} = ∅. Since h is not isolated in H ′′ and H is connected, we see that
h has a neighbor in ∪ni=σ+1{xi2, xi3}. We may assume without loss of generality that
hxσ+1

2 ∈ E(H). If h has another neighbor in Hσ+1, by choosing a maximal independent
set I of H containing xσ+1

2 it follows that H − I has a component of order at least 4
that contains {y1, h, xσ+1

1 , xσ+1
3 }. This is a contradiction. Therefore, h has at most one

neighbor in Hi for each i ∈ [n]− [σ]. Suppose next that h has a neighbor w ∈ V (Hj)
for some j with σ + 1 < j ≤ n. Let I be a maximal independent set in H such that
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{w, xσ+1
1 } ⊆ I. Now the set {h, y1, xσ+1

2 , xσ+1
3 } induces a connected subgraph of H − I.

This is a contradiction. Therefore, if h ∈MH , then degH(h) = 1 and the only neighbor
of h is in the set ∪ni=σ+1{xi2, xi3}.

Suppose some vertex in YH , say y1, is adjacent in H to a vertex that does not belong
to V (Hσ+1). Let L = {u ∈ V (H ′) − V (Hσ+1) : u ∈ NH(y1)}. From what was shown
earlier we know that L ⊆ ∪σi=1{xi1}. Suppose there exists a vertex, say xk1 ∈ L, such that
degH(xk1) ≥ 2. Since no vertex of MH is adjacent to xk1 by the claim in the paragraph
above, let yj ∈ NH(xk1) − {y1}. Enlarge {yj, xσ+1

1 } to a maximal independent set I of
H. Then {xk1, y1, xσ+1

2 , xσ+1
3 } induces a connected subgraph in H − I, which is again a

contradiction, and it follows that every vertex in L is a leaf in H. Since H is connected,
this implies that H ∈ F2, and thus G�H is not well-dominated by Lemma 4. This is
a contradiction.

Subcase 3.2. [Every component of H ′ is a complete graph of order 3.]

Note that from above we have each vertex u ∈ IH − C that is adjacent to every
vertex of V (Hi)− {xi1} for some i ∈ [n] is not adjacent to any vertex of V (Hj)− {xj1}
for i 6= j. Moreover, our arguments that YH 6= ∅ and ZH = ∅ did not rely on H ′

containing isolates. Therefore, we may assume that there exists y1 ∈ YH such that
N(y1) = V (H1). Furthermore, our argument that if MH 6= ∅ implies MH has exactly
one neighbor in H that belongs to ∪ni=σ+1{xi2, xi3} did not rely on H ′ containing isolates.
However, since H is connected, this leads us to H ∈ F2 or H = K4, both of which are
contradictions, one by Lemma 4 and one by our choice of G�H.

Case 4. [Some component of H ′ is K2.]

We may assume that each component of H ′ is a complete graph of order 1 or 2
since the other possibilities have been argued in the first three cases. Since G′�H ′

is well-dominated, it follows from Theorem 3 that each component of G′ is K1 or K2.
Recall that we may also assume that G′ has at least one component that is a complete
graph of order 2.

Subcase 4.1. [G′ contains an isolated vertex.]

Let G′ = G1 ∪ · · · ∪Gα ∪Gα+1 ∪ · · · ∪G` where Gi = K1 for i ∈ [α] and Gi = K2 for
α+ 1 ≤ i ≤ `. For α+ 1 ≤ i ≤ `, let V (Gi) = {xi1, xi2} and for each Gi = K1, label the
vertex xi1. Let J be the maximal independent set of G defined by J = C ∪

⋃`
i=1{xi1},

where C = IG −NG[∪`i=1{xi1}]. Using the same argument as above, G′′ = G− J is the
disjoint union of components each of which is either K1 or K2. It follows that each
vertex x ∈ IG − C is either an isolate in G′′ or is adjacent to a vertex xi2 for some
α + 1 ≤ i ≤ `. Note that if x ∈ IG − C, then x has at most one neighbor in the set
∪`i=α+1{xi2}, for otherwise x belongs to a component of order at least 3 in G′′.
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Suppose G contains a triangle. This means there exists a vertex g ∈ IG − C and
an index k ∈ [`] − [α] such that {g, xk1, xk2} induces a triangle in G. Without loss of
generality we may assume k = α+ 1. Suppose xα+1

1 has a neighbor w ∈ IG − {g} that
is not a leaf in G. If w is adjacent to xα+1

2 , then we can pick a maximal independent
set I of G containing xα+1

2 . However, G− I contains the path induced by {w, g, xα+1
1 },

which is a contradiction. If w is adjacent to some xjs for j 6= α+ 1 and s ∈ {1, 2}, then
we can pick a maximal independent set I containing xjs and xα+1

2 and again we have
a contradiction. Therefore, NG(xα+1

1 )− {g, xα+1
2 } is either empty or consists of leaves

in G. A similar argument can be used to show that NG(xα+1
2 ) − {g, xα+1

1 } is either
empty or consists of leaves in G. Finally, suppose that g is adjacent to some xjr where
j 6= α + 1, r ∈ {1, 2} and xjr is not a leaf in G. Since no vertex in IG − C has more
than one neighbor in ∪`i=α+1{xi2}, we infer that r = 1. Also, j /∈ [`]− [α] for otherwise

{g, xα+1
1 , xj1} induces a path in G− I where I is a maximal independent set of G that

contains {xj2, xα+1
2 }. Since xj1 is not a leaf in G, we have zxj1 ∈ E(G) for some vertex

z ∈ IG. It follows that z is not adjacent to xα+1
2 since NG(xα+1

2 ) − {g, xα+1
1 } consists

of leaves in G. Therefore, we can choose a maximal independent set I containing
{z, xα+1

2 } and now G− I contains the path of order 3 induced by {xj1, g, xα+1
1 }, which

is a contradiction. Therefore, NG(g)−{xα+1
1 , xα+1

2 } is either empty or consists entirely
of leaves in G. Combining these conclusions about the neighbors of g, xα+1

1 and xα+1
2

and the fact that G is connected, we see that G ∈ F1 or G = K3. If G ∈ F1, it follows
from Lemma 4 that G�H is not well-dominated. On the other hand, G 6= K3 as we
have assumed G is not complete.

Therefore, G does not contain a triangle. Furthermore, the same argument can be
used to prove that H does not contain a triangle. Hence, G and H are both of order
at least 3 and girth at least 4. By Lemma 1, G�H is not well-covered and therefore
not well-dominated. This is a contradiction.

Subcase 4.2. [Every component of G′ is K2.]

Now, suppose a vertex g ∈ IG − C belongs to a triangle in G induced by {g, xk1, xk2}
for some k ∈ [`]. Using the argument in the paragraph above it follows that the two
sets NG(xk1)− {g, xk2} and NG(xk2)− {g, xk1} are either empty or consist of leaves in G.
On the other hand, NG(g)−{xk1, xk2} = ∅ since G′ does not contain an isolated vertex.
Once again it follows that G ∈ F1 or G = K3, both of which lead to a contradiction.
Therefore G does not contain a triangle and as above we infer by Lemma 1 that G�H
is not well-covered and therefore not well-dominated. This is a contradiction.

We have shown that every possible case concerning the components of H ′ leads to a
contradiction. This finishes the proof.

Using Theorem 3 together with Theorem 4 we now have a complete characterization
of nontrivial, connected Cartesian products that are well-dominated.
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Corollary 1. A nontrivial, connected Cartesian product G�H is well-dominated if
and only if G�H = P3�K3 or G�H = Kn�Kn for some n ≥ 2.

Acknowledgements

We would like to thank Erika King and Michael O’Grady for finding the error in our
original proof to Theorem 2 in [1]. We also thank the referees for a number of helpful
suggestions and for helping us to clarify some of the proofs in this paper.

References

[1] Sarah E. Anderson, Kirsti Kuenzel, Douglas F. Rall, On well-dominated graphs,
Graphs Combin. 37 no. 1 151–165 (2021).

[2] B. Bollobás, E. Cockayne, Graph theoretic parameters concerning domination,
independence and irredundance, J. Graph Theory, 3 241–250 (1979).

[3] A. Finbow, B. Hartnell, R. Nowakowski, Well-dominated graphs: a collection of
well-covered ones, Eleventh British Combinatorial Conference (London, 1987), Ars
Combin. 25 A 5–10 (1988).

[4] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness (Freeman, New York, 1979).
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