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Abstract

The dual notions of domination and packing in finite simple graphs were first exten-
sively explored by Meir and Moon in [15]. Most of the lower bounds for the domination
number of a nontrivial Cartesian product involve the 2-packing, or closed neighborhood
packing, number of the factors. In addition, the domination number of any graph is
at least as large as its 2-packing number, and the invariants have the same value for
any tree. In this paper we survey what is known about the domination, total domina-
tion and paired-domination numbers of Cartesian products and direct products. In the
process we highlight two other packing invariants that each play a role similar to that
played by the 2-packing number in dominating Cartesian products.
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1 Introduction

One of the most well-known open problems in domination theory is the conjecture made
by V. G. Vizing [19] almost forty years ago. The conjecture states that the domination
number of the Cartesian product of any pair of graphs is no less than the product of their
domination numbers. The closed neighborhood, or distance-two, packing number plays an
important role in many of the attacks on this conjecture. In this paper we consider two
other types of packing invariants and show how each plays a similar role in the study of a
generalized domination number on a particular graph product.

1.1 Domination and Packing

For notation and graph theory terminology we generally follow [9]. Let G be a finite,
simple, undirected graph with vertex set V = V (G) and edge set E = E(G). The open
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neighborhood of a vertex v ∈ V is NG(v) = {u ∈ V | uv ∈ E }, while its closed neighborhood
is NG[v] = N(v)∪{v}. For a set S ⊆ V , NG(S) denotes

⋃
v∈S NG(v) and NG[S] = NG(S)∪S.

If the graph is clear from the context, then we omit the subscript on these neighborhood
names. The neighborhood of an edge e = uv is N({u, v}) = N [{u, v}]. For a set S ⊆ V ,
the subgraph of G induced by S is denoted by 〈S〉G or 〈S〉 and the complement of G by G.
A family {Sk}k∈I of subsets of vertices in G is a cover of (or covers) G if V (G) = ∪k∈ISk.
The family is a packing if the subsets are pairwise disjoint. A matching in G is a collection
of edges that, as sets of vertices, is a packing. A matching M is a perfect matching of G if
it covers G when M is considered as a collection of 2-element subsets of vertices.

For a positive integer k, Meir and Moon [15] defined a k-packing in G to be a set A ⊆ V
such that for every pair of distinct vertices u and v in A, the distance between u and v in G
is more than k. For k = 2 this is equivalent to requiring that {N [x]}x∈A is a packing in the
sense defined in the previous paragraph. A vertex subset B is an open packing in G if the
collection of open neighborhoods, {N(x)}x∈B, is a packing in G. The k-packing number is
the order of a largest k-packing of G and is denoted ρk(G), while the open packing number,
ρo(G), is the order of a largest open packing in G. Of course, 1-packings (independent sets)
have played a prominent role in graph theory almost since its formal beginnings. We will
use the more common notation α(G), instead of ρ1(G), for the vertex independence number
of G, the cardinality of a largest independent set of vertices in G.

A subset D of vertices is a dominating set of G if every vertex x in V either belongs to D
or is adjacent to a vertex in D. Equivalently, the family {N [x]}x∈D of closed neighborhoods
covers G. Such a dominating set is minimal if no proper subset of D is a dominating set.
The domination number, γ(G), is the minimum cardinality of a dominating set of G. A
set S of vertices is a total dominating set if the family {N(x)}x∈S of open neighborhoods
covers G, and the total domination number, γt(G), equals the minimum cardinality of a
total dominating set of G. To guarantee that a graph has a total dominating set we must
assume it has no isolated vertices. Hence we assume this to be the case for all graphs in
the remainder of the paper. A dominating set D whose induced subgraph 〈D〉 contains
a perfect matching is called a paired-dominating set, and the paired-domination number
γpr(G) is the cardinality of a smallest such set. The vertices saturated by the edges of any
maximal matching in G constitute a paired dominating set. Thus, γpr(G) is defined for
all graphs under consideration and is no larger than twice the order of a smallest maximal
matching. It follows from their definitions that γ(G) ≤ γt(G) ≤ γpr(G). The path of order
five shows that all of the inequalities can be strict; all three values are equal on a path of
order four. A dominating set D of cardinality γ(G) is called a γ(G)-set or a γ-set if G is
understood from context. We define γt-set, γpr-set, ρk-set and ρo-set similarly.

The fact that ρ2(G) ≤ γ(G) for every G follows directly from the observations that a
γ-set intersects every closed neighborhood and a ρ2-set contains at most one vertex from
each closed neighborhood. In an entirely similar way, and based only on the definitions, it
is immediate that ρo(G) ≤ γt(G) for every G that has no isolated vertices. In [3] Brešar,
et al demonstrated a connection, although not so direct, between paired-domination and
3-packings. We summarize these relationships in the following.
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Proposition 1.1 For any graph G without isolated vertices,

(i) γ(G) ≥ ρ2(G);

(ii) γt(G) ≥ ρo(G); and

(iii) ([3]) γpr(G) ≥ 2ρ3(G).

Proof. The first two inequalities follow as above. Let D be a γpr(G)-set and let C be
a ρ3(G)-set. Suppose |D| = 2k. For each vertex x ∈ C, let p(x) be a vertex such that
p(x) ∈ D ∩N [x] and let D′ = ∪x∈C{p(x)}. Since C is a 3-packing, |C| = |D′| and D′ is an
independent set in 〈D〉. Now, 〈D〉 is covered by k edges and consequently

γpr(G) = |D| ≥ 2|D′| = 2ρ3(G) .

2

1.2 Product Graphs

For product graphs we follow the book by Imrich and Klavžar [12]. Specifically, the Carte-
sian product, G1 2 G2, of two graphs G1 and G2 has the ordinary (set) Cartesian product
V (G1)× V (G2) as its vertex set. Two vertices u = (u1, u2) and v = (v1, v2) are adjacent in
G1 2 G2 if they are equal in one coordinate and adjacent in the other. (That is, for exactly
one of i = 1 or i = 2, ui = vi and u3−i is adjacent to v3−i in G3−i.) The direct product,
G1 × G2, has the same vertex set as the Cartesian product, and u and v are adjacent in
G1 ×G2 precisely when u1v1 is an edge in G1 and u2v2 is an edge in G2.1

For a vertex g in G, the subgraph of G 2 H induced by the set {(g, h) | h ∈ V (H)} is
isomorphic to H and is denoted by gH. For h ∈ V (H), Gh is the subgraph, isomorphic to G
and induced by {(g, h) | g ∈ V (G)}. Both of these subgraphs are called fibers of G 2 H. In
a direct product G×H we also refer to these as fibers, but in this case they are independent
sets in G×H.

Depending on the particular graph product and the particular property of vertex subsets,
it may be easy to establish that the (set) Cartesian product of two sets with the property
retains that property in the product graph. For example, if Ij is an independent set in the
graph Gj for j = 1, 2, then the set I1 × I2 is independent in the graph G1 2 G2. Because α
measures the largest order of an independent set, it follows that α(G1 2 G2) ≥ α(G1)α(G2).
On the other hand, if Di is a dominating set of Gi for i = 1, 2, then D1 × D2 dominates
G1 2 G2 only if Di = V (Gi) for at least one of the values of i.

For a given graphical invariant σ and given graph product ⊗ it is thus natural to inves-
tigate the behavior of σ on ⊗. It is sometimes the case that the value σ(G ⊗ H) depends
directly on the two values σ(G) and σ(H) for all pairs of graphs G and H. We say that σ is

1The direct product has gone by a number of different names in the literature including categorical,
tensor, cardinal, etc.
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supermultiplicative (respectively, submultiplicative) on ⊗ if σ(G⊗H) ≥ σ(G)σ(H) (respec-
tively, σ(G⊗H) ≤ σ(G)σ(H)) for all pairs G and H. A class of graphs C is called a universal
multiplicative class for σ on ⊗ if for every graph H, it follows that σ(G⊗H) = σ(G)σ(H)
whenever G is from the class C. (We only require the given inequality or equality to hold
for those graphs for which the invariant is defined.)

Possibly the most well-known problem in this part of domination theory is the conjecture
of V. G. Vizing [19] that dates from 1968.

Vizing’s Conjecture The domination invariant γ is supermultiplicative on the Cartesian
product 2.

We will say that Vizing’s conjecture holds for (or is satisfied by) the graph G if γ(G 2 H) ≥
γ(G)γ(H) for every H.

In the remainder of the paper we summarize what is known on questions related to
whether various domination invariants are sub- or super- multiplicative on the graph prod-
ucts 2 and ×. In the process we illustrate the importance of a packing invariant in three
of these cases and show similarities between these packing-domination pairs.

2 Domination

2.1 Cartesian Product

For nearly a dozen years no positive results were published on Vizing’s conjecture. In 1979
Barcalkin and German [2] showed that the conjecture holds for a large class of graphs that
includes some well-known families of graphs.

Theorem 2.1 ([2]) If G is the spanning subgraph of a graph G′ such that γ(G) = γ(G′)
and G′ has γ(G′) complete subgraphs that cover G′, then Vizing’s conjecture holds for G.

Let us say that a graph G is a BG-graph2 if it satisfies the hypothesis of Theorem 2.1.
Suppose A = {v1, . . . , vk} is a ρ2(G)-set and that k = γ(G). The set A may not dominate
G; in any case, let B = V (G) − N [A]. Add edges to G so that each closed neighborhood
NG[vi] becomes a complete subgraph. If B is not empty, add edges to make N [v1] ∪ B a
complete subgraph. Call this graph with added edges G′. It is clear that ρ2(G′) = k and
thus G is shown to be a BG-graph. The following result of Meir and Moon [15] then shows
that every tree is a BG-graph.

Theorem 2.2 ([15]) If T is any tree, then γ(T ) = ρ2(T ).
2It should be noted that Barcalkin and German called this collection of graphs the A-class. BG-graphs

is our term to give them credit for this significant result.
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The proof given in [15] is by induction on the order of the tree. One can also prove this
theorem by an argument similar to that given in [17] for Theorem 3.5 by considering the
intersection graph on the closed neighborhoods of T . In [2] it is also shown that graphs
with domination number two are BG-graphs. One can readily prove that every cycle is a
BG-graph. It is not always an easy matter to determine if a given graph is a BG-graph
since there are potentially many ways to add edges to form the required number of complete
subgraphs that cover the graph while at the same time not reducing the domination number.
An example of a small graph that is not a BG-graph and yet satisfies Vizing’s conjecture
is the cubic graph F of order eight that is formed from K3,3 by “expanding” one vertex to
a K3. For every pair u, v of non-adjacent vertices in F , γ(F + uv) = 2 < 3 = γ(F ), and
clearly F is not covered by three complete subgraphs proving that F is not a BG-graph.
Part (i) of the next result shows that F satisfies the conjecture.

Theorem 2.3 Vizing’s conjecture holds for any graph G satisfying one of the following
conditions:

(i) ([18]) γ(G) = 3;

(ii) ([6]) γ(G) = ρ2(G) + 1;

(iii) ([1]) G is chordal.

Another approach—instead of showing that the conjecture holds for a new class of
graphs—was taken by Clark and Suen. They were the first to show that the domina-
tion number of the Cartesian product of two graphs is always bounded below by a positive
constant multiple of the product of their domination numbers. Their result has also proven
to be useful in studying other domination parameters on Cartesian products.

Theorem 2.4 ([5]) For any graphs G and H, γ(G 2 H) ≥ 1
2γ(G)γ(H).

Attempts to increase the constant in the above have so far proven to be futile. A proof
of Vizing’s conjecture would, of course, solve the following problem. But, short of that,
finding a solution would represent significant progress towards settling the conjecture.

Problem 1 Find a constant c > 1
2 such that, for all graphs G and H,

c · γ(G)γ(H) ≤ γ(G 2 H) .

In contrast to what we will show in the case of total domination of direct products, the
following result of Hartnell and Rall implies there is no nontrivial universal multiplicative
class for γ on 2 .

Theorem 2.5 ([8]) If T is a tree that has a vertex adjacent to at least two leaves, then
γ(G 2 T ) > γ(G)γ(T ) for every connected graph G of order at least two.
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Jacobson and Kinch demonstrated the importance of 2-packings in the study of dominat-
ing sets in Cartesian products. They used the fact that the closed neighborhood of a vertex
(u, v) in G 2 H is contained in NG[u]× V (H) and that any dominating set of G 2 H must
contain at least γ(H) vertices from NG[u]× V (H) to prove the following result. Note that
the bound might provide little information about the domination number of the Cartesian
product (e.g., if both graphs have a small 2-packing number).

Theorem 2.6 ([13]) For any pair of graphs G and H,

γ(G 2 H) ≥ max{γ(G)ρ2(H), γ(H)ρ2(G)} .

We summarize three important connections between packings and domination, at least
as they relate to dominating Cartesian products.

Theorem 2.7 Let G and H be any graphs and let T be any tree. Then

(i) γ(G) ≥ ρ2(G);

(ii) γ(G 2 H) ≥ max{γ(G)ρ2(H), γ(H)ρ2(G)};

(iii) γ(T ) = ρ2(T ).

2.2 Direct Product

The domination invariant γ is not supermultiplicitive on direct products. For example, as
shown in [16], if G is a complete graph of even order at least six with a perfect matching
removed, then γ(G × G) = 3 < γ(G)γ(G). In [14] Klavžar and Zmazek exhibited an
infinite collection of graphs, {Gn}, such that γ(Gn × Gn) ≤ 7

9γ(Gn)γ(Gn). Also, γ is not
submultiplicative on × as illustrated by γ(K3 × K3) = 3 > γ(K3)γ(K3). However, using
Theorem 3.3 and the easily established fact that γt(G) ≤ 2γ(G) it follows immediately that

γ(G×H) ≤ 4γ(G)γ(H). (1)

It thus seems reasonable to ask for the largest value of the constant c and the smallest value
of C such that for every pair of graphs G and H,

c · γ(G)γ(H) ≤ γ(G×H) ≤ C · γ(G)γ(H). (2)

The above examples show that c can be at most 3/4 while C must be at least 3. At the
present time we do not know of a constant 0 < c < 1 such that the first inequality in (2)
holds for all graphs G and H. A recent paper by Brešar, Klavžar and Rall established
C = 3 as the correct value in the second inequality.

Theorem 2.8 ([4]) For any graphs G and H, γ(G×H) ≤ 3γ(G)γ(H).

6



The authors of [4] show that if G is a graph such that γ(G) > ρ2(G), then for every H,
γ(G ×H) < 3γ(G)γ(H). However, choose each of G and H to be a graph having a ρ2-set
that is also a dominating set and then add two pendant vertices to each vertex in each
of these γ-sets. Denote the resulting graphs G+ and H+, respectively. They prove that
γ(G+ ×H+) = 3γ(G+)γ(H+), thus proving that the bound in Theorem 2.8 is sharp.

Nowakowski and Rall [16] proved that if G and H have no isolated vertices, then

γ(G×H) ≥ max{γt(H)ρ2(G), γt(G)ρ2(H)}. (3)

For any tree T , it then follows from Theorem 2.2 that

γ(T ×H) ≥ ρ2(T )γt(H) = γ(T )γt(H) ≥ γ(T )γ(H) .

Hence, with appropriate restrictions on one of the factors, c can be chosen to be 1 in (2).
In [4] it is shown that if γ(G) = γt(G) and γ(H) = γt(H), then γ(G × H) ≤ γ(G)γ(H).
If, in addition, either ρ2(G) = γ(G) or ρ2(H) = γ(H), then by appealing to (3) we see
that γ(G × H) = γ(G)γ(H). That is, if additional conditions are imposed on the factors,
then we are able to say more about the constants in (2). For the general case we pose the
following question.

Question 1 What is the largest constant c such that, for all graphs G and H,

c · γ(G)γ(H) ≤ γ(G×H) ?

3 Total Domination

3.1 Cartesian Product

The total domination invariant, γt, is neither submultiplicative nor supermultiplicative on
Cartesian products as γt(Kn 2 Kn) shows for n ≥ 5 and n = 3, respectively. In fact, by
letting n be an arbitrary integer larger than five in the above, we see that the ratio of
γt(G 2 H) to γt(G)γt(H) can be made arbitrarily large. That is, there does not exist a
constant C such that γt(G 2 H) ≤ C · γt(G)γt(H). In this section we show—in the other
direction—that for any pair of graphs the above ratio is at least 1/6 and that if one of the
graphs is, for example a tree, then it is at least 1/2.

If D is any γ(G)-set, then let D′ be the set obtained by enlarging D to include a vertex
v′ from the open neighborhood of each vertex v that is isolated in the subgraph 〈D〉. It is
clear that D′ is a total dominating set of G and that |D′| ≤ 2|D|. Thus, γt(G) ≤ 2γ(G), and
by combining this with the bound of Clark and Suen from Section 2.1 we get the following
chain of inequalities

γt(G)γt(H) ≤ 4γ(G)γ(H) ≤ 8γ(G 2 H) ≤ 8γt(G 2 H) ,

proving the ratio is always at least 1/8. This was first observed by Henning and Rall in [11]
in the only study to date of the multiplicative nature of γt on 2 . By employing a technical

7



counting argument based around a partition of V (G) that is formed via a minimum paired-
dominating set of G, the authors were able to establish the following result that provided
the first nontrivial lower bound for γt(G 2 H) as a multiple of γt(G)γt(H).

Theorem 3.1 ([11]) For any graphs G and H without isolated vertices,

γt(G)γt(H) ≤ 6γt(G 2 H).

We do not know of any pair of graphs for which the six in the established bound cannot
be replaced by two. As is true in many of these situations, if one factor is appropriately
restricted then the bound can be improved. We give the proof of this result to illustrate
the interplay between several of the domination and packing invariants.

Theorem 3.2 ([11]) Let G and H be graphs without isolated vertices and assume that
ρ2(G) = γ(G). Then

γt(G)γt(H) ≤ 2γt(G 2 H) .

Proof. Let D be a minimum total dominating set of the product G 2 H, and let S =
{g1, . . . , gγ(G)} be a ρ2(G)-set. Choose a partition {V1, . . . , Vγ(G)} of V (G) such that for
i = 1, . . . , γ(G), NG[gi] ⊆ Vi. For i = 1, . . . , γ(G), let Di = D ∩ (Vi × V (H)). Further, let
Si be a minimum set of vertices in G 2 H that every vertex of the fiber giH has a neighbor
in Si and such that Si contains as many vertices in giH as possible. Then, Si ⊆ Vi ×V (H).
If Si contains a vertex x not in giH, then x has a unique neighbor x′ ∈ giH. Replacing
x in the set Si with any neighbor of x′ in giH (notice that such a vertex exists since H
has no isolated vertices) produces a new minimum set S′

i of vertices in G 2 H such that
giH ⊆ N(S′

i) and S′
i contains more vertices in giH than does Si, a contradiction. Hence,

Si ⊆ Hi, and so Si is a total dominating set of the fiber giH. Since giH is isomorphic to H,
it follows that |Si| ≥ γt(H). But giH ⊆ N(Di) as well, and hence |Di| ≥ |Si|. Thus,

γt(G 2 H) = |D| =
γ(G)∑
i=1

|Di| ≥
γ(G)∑
i=1

|Si| ≥
γ(G)∑
i=1

γt(H) = γ(G)γt(H) ≥ 1
2
γt(G)γt(H). (4)

2

In particular, by Theorem 2.2 it follows that if T is any tree of order at least two, then

γt(T )γt(H) ≤ 2γt(T 2 H). (5)

In [11] Henning and Rall showed the bound of Theorem 3.2 is sharp and, in fact, showed
that for connected graphs, equality holds in (5) if and only if γt(T ) = 2γ(T ) and H = K2.
This is further evidence for an affirmative answer to the following.

Question 2 Is 1
2 ·γt(G)γt(H) ≤ γt(G 2 H) for all graphs G and H without isolated vertices?
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3.2 Direct Product

In this section we will show that open packings assume a role for total domination in
direct products that is strikingly similar to that played by 2-packings relative to ordinary
domination in Cartesian products. In particular, we prove a result that corresponds to
Theorem 2.7.

If R is a total dominating set of G and S is a total dominating set of H, it follows imme-
diately from the definition of the direct product that every vertex (g, h) of G×H is adjacent
to a vertex in R × S. An immediate consequence of this is that γt is submultiplicative on
the direct product.

Theorem 3.3 ([16]) If G and H have no isolated vertices, then γt(G×H) ≤ γt(G)γt(H).

A lower bound for the total domination number of a direct product can be expressed in
terms of the open packing numbers and total domination numbers of the factor graphs in
a manner analogous to Theorem 2.6 in the case of Cartesian products.

Theorem 3.4 ([17]) For any graphs G and H with no isolated vertices,

γt(G×H) ≥ max{γt(G)ρo(H), γt(H)ρo(G)}.

Proof. It suffices to show that γt(G×H) ≥ γt(G)ρo(H). Fix a vertex h in H, let B be a
ρo(H)-set and let S be a γt(G × H)-set. For g ∈ V (G) the open neighborhood of (g, h) is
given by N((g, h)) = NG(g) × NH(h). Then, S contains a vertex (x, y) adjacent to (g, h)
such that (x, y) ∈ ∪w∈N(h)G

w. Let Sh = {x | (x, y) ∈ S ∩ (∪w∈N(h)G
w) }. It follows that

Sh is a total dominating set of G. But now

S ⊇
⋃

h∈B

[S ∩ (
⋃

w∈N(h)

Gw)],

and thus

γt(G×H) = |S| ≥
∑
h∈B

|S ∩ (
⋃

w∈N(h)

Gw)| ≥
∑
h∈B

|Sh| ≥ ρo(H)γt(G) .

2

Putting Theorem 3.4 together with the fact that γt is submultiplicative on × we can now
show that there is a nontrivial universal multiplicative class U , for γt on ×. Any graph G
such that γt(G) = ρo(G) belongs to U , for then

γt(G)γt(H) = ρo(G)γt(H) ≤ γt(G×H) ≤ γt(G)γt(H) .

As noted in [17], the complete bipartite graphs, cycles of order divisible by four as well
as any graph G constructed by adding at least one endvertex adjacent to each vertex of
any connected graph F belong to U . Again, in a result reminiscent of Theorem 2.2 for
2-packings and domination in trees, Rall proved the following result for open packings and
total domination in trees. As a consequence, every nontrivial tree belongs to U .
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Theorem 3.5 ([17]) If T is any tree of order at least two, then γt(T ) = ρo(T ). Thus, for
any graph G with no isolated vertices, γt(T ×G) = γt(T )γt(G).

Combining Proposition 1.1(ii), Theorem 3.4 and Theorem 3.5 we observe that there is
an analogous relationship between open packings and total domination in direct products
as there is between 2-packings and ordinary domination in Cartesian products. See Theo-
rem 2.7.

Theorem 3.6 Let G and H be any graphs without isolated vertices,and let T be any tree
of order at least two. Then

(i) γt(G) ≥ ρo(G);

(ii) γt(G×H) ≥ max{γt(G)ρo(H), γt(H)ρo(G)};

(iii) γt(T ) = ρo(T ).

We close this section with a question about which essentially nothing is known, except
that if such a constant exists then it can be at most 3/4.

Question 3 Is there a positive constant c (and if so, what is the largest) such that

c · γt(G)γt(H) ≤ γt(G×H)

hold for all graphs G and H without isolated vertices?

4 Paired-domination

4.1 Cartesian Product

The invariant γpr is neither supermultiplicative nor submultiplicative on 2 . For example,

γpr(P2 2 P2) = 2 < γpr(P2)γpr(P2) and γpr(K2n 2 K2n) = 2n > 4 = γpr(K2n)γpr(K2n) .

The latter example shows that the ratio of γpr(G)γpr(H) to γpr(G 2 H) can be arbitrarily
close to zero. On the other hand, this ratio cannot be larger than 8 as is shown by the
following inequality chain,

γpr(G)γpr(H) ≤ 4γ(G)γ(H) ≤ 8γ(G 2 H) ≤ 8γpr(G 2 H). (6)

The second inequality above follows from Theorem 2.4 while the first is a consequence of
the easily established fact that the paired-domination number of a graph is at most twice
its domination number. It is not known whether a smaller constant can replace the 8 in
the above inequality. However, Brešar, Henning and Rall showed that 2 will suffice with an
appropriate restriction placed on one of the factor graphs. An infinite family of graphs was
described to show this bound is sharp.
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Theorem 4.1 ([3]) If γpr(G) = 2ρ3(G), then for every H with no isolated vertices,

γpr(G)γpr(H) ≤ 2γpr(G 2 H) .

In particular, they showed that the hypothesis holds if G is any nontrivial tree, thus
establishing a 3-packing, paired-domination result for trees that is similar to Theorem 2.2
and Theorem 3.5. We omit the proof.

Theorem 4.2 ([3]) For every nontrivial tree T , γpr(T ) = 2ρ3(T ).

From Inequality (6) and Proposition 1.1 it follows that γpr(G 2 H) ≥ 1
4ρ3(G)γpr(H). A

stronger lower bound for the paired-domination number of the Cartesian product in terms
of the 3-packing and paired-domination numbers of the factors was established in [3]. Note
the similarity of this result to those given earlier in Theorem 2.6 and Theorem 3.4.

Theorem 4.3 ([3]) For any graphs G and H without isolated vertices,

γpr(G 2 H) ≥ max{γpr(G)ρ3(H), γpr(H)ρ3(G)}.

Proof. Let S = {v1, . . . , vρ3(G)} be a ρ3(G)-set. For i = 1, . . . , ρ3(G), let Vi = NG[vi], and
so the sets Vi are pairwise disjoint. Let D be a γpr(G 2 H)-set. Fix a perfect matching M
of 〈D〉G 2 H . For u ∈ D the unique vertex v ∈ D such that uv ∈ M is called the partner of
u with respect to M . For i = 1, . . . , ρ3(G), let Di consist of all vertices of D in Vi × V (H)
together with their partners (some of which may possibly not belong to Vi × V (H)), and
let Hi = V (viH) = {vi} × V (H). Since S is a 3-packing in G, and since every vertex of a
paired-dominating set has a unique partner, we note that the sets Di are pairwise disjoint.
Hence

|D| ≥
ρ3(G)∑
i=1

|Di| .

For i = 1, . . . , ρ3(G), let Si be a minimum set of vertices in G 2 H such that (i) Si

dominates Hi and (ii) the subgraph induced by Si in G 2 H contains a perfect matching
Mi. Among all such sets Si, we choose Si to contain as many vertices in Hi as possible.
Since the set Di satisfies conditions (i) and (ii), we have that

|Di| ≥ |Si| .

If Si contains a vertex x not in Vi×V (H), then x is the partner of a vertex x′ (with respect
to the perfect matching Mi) not in Hi that uniquely dominates a vertex y ∈ Hi. Replacing
x in the set Si with the vertex y produces a new set of vertices in G 2 H that satisfies
conditions (i) and (ii) but that contains more vertices in Hi than does Si, a contradiction.
Hence, Si ⊆ Vi × V (H).
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We show next that Si ⊆ Hi. Suppose Si contains a vertex u not in Hi. Let u′ be the
partner of u (with respect to Mi). If u′ /∈ Hi, then let w (respectively, w′) be the neighbor
of u (respectively, u′) in G 2 H that belongs to Hi. We distinguish two cases with respect
to w and w′ being distinct.

Case 1. w 6= w′. Then neither w nor w′ is in Si (or else neither u nor u′ would have been
needed in Si) and at least one of w and w′ is not dominated by Si − {u, u′}. So we can
replace the pair u and u′ in the set Si with the pair w and w′ to produce a new set of
vertices in G 2 H that satisfies conditions (i) and (ii) but that contains more vertices in Hi

than does Si, contradicting our choice of Si.

Case 2. w = w′. Then no vertex from N [w]∩Hi belongs to Si (or again Si would not have
contained either u or u′). So by replacing u′ by w in Si we produce a new set that satisfies
conditions (i) and (ii) but that contains more vertices in Hi than does Si, a contradiction.

Both cases imply that u′ ∈ Hi. If Si contains every neighbor of u′ in Hi, then we can
simply delete u and u′ from the set Si to contradict our choice of Si. Hence at least one
neighbor u′′ of u′ in Hi does not belong to Si. Replacing u in the set Si with u′′ produces
a new set of vertices in G 2 H that satisfies conditions (i) and (ii) (with u′ paired with u′′

in the new set) but that contains more vertices in Hi than does Si, a contradiction. Hence,
Si ⊆ Hi, and so Si is a paired-dominating set of the subgraph viH. Since viH is isomorphic
to H it follows that

|Si| ≥ γpr(H) .

Thus,

γpr(G 2 H) = |D| ≥
ρ3(G)∑
i=1

|Di| ≥
ρ3(G)∑
i=1

|Si| ≥
ρ3(G)∑
i=1

γpr(H) = ρ3(G)γpr(H) ,

which establishes the desired bound. 2

Again, as in the case of domination in Cartesian products (Theorem 2.7) and in total dom-
ination of direct products (Theorem 3.6) we summarize the relationships involving paired-
domination and 3-packings. This result follows from Proposition 1.1(iii), Theorem 4.3 and
Theorem 4.2.

Theorem 4.4 Let G and H be any graphs and let T be any tree. Then

(i) γpr(G) ≥ 2ρ3(G);

(ii) γpr(G 2 H) ≥ max{γpr(G)ρ3(H), γpr(H)ρ3(G)};

(iii) γpr(T ) = 2ρ3(T ).

Rewriting inequality (6) we see that for every pair of graphs

1
8
· γpr(G)γpr(H) ≤ γpr(G 2 H) .

We close with the following question related to improving this bound.
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Question 4 What is the largest constant c ≥ 1
8 such that, for all graphs G and H,

c · γpr(G)γpr(H) ≤ γpr(G 2 H) ?

4.2 Direct Product

If A and B are paired-dominating sets of G and H respectively, then clearly A×B dominates
G × H and one easily shows that 〈A × B〉 contains a perfect matching. Thus, γpr is
submultiplicative on ×. That is, for every pair of graphs G and H with no isolates, γpr(G×
H) ≤ γpr(G)γpr(H). In [4] it is shown that there are infinite families for which equality is
actually achieved, although no universal multiplicative class is shown to exist. On the other
hand, if Sn denotes the subdivided star with n pendant vertices, then it is shown that

γpr(Sn × Sn) ≤ 2n2 + 2n < 4n2 = γpr(Sn)γpr(Sn) .

Question 5 Is there a positive constant c (and if so, what is the largest) such that

c · γpr(G)γpr(H) ≤ γpr(G×H)

hold for all graphs G and H without isolated vertices?
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