Prove that the symmetric difference is an associative operation; that is, for any sets A, B and C,
we have AN (BAC)=(AA B) AC.

We are assuming that the three sets A, B and C' are all subsets of a fixed universal set U. In
the proof we use the definition of symmetric difference (see the top of page 69), the distributive
law, DeMorgan’s law, and the following fact repeatedly: for any two subsets X and Y of U, X —
Y = X NY. You should verify this yourself. Combining the first and last of these we see that
XAY=(XNnY)Uu(YNnX).
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Now, since union and intersection are commutative operations on sets, we get that

AN(BAC) = (AnNBNCO)U(ANCNB)U(BNCNAU(CNB
= (CNANB)U(CNBNAUANBNC)U(BNA
(AA B)AC
If you think about this for a moment you can see that the symmetric difference of 3 sets (in any

order) is the set consisting of those elements that belong to exactly one of the three sets or to all
three sets. Can you give a verbal description of the set of elements that comprise

Ay AN Ay AN - A A,

for an arbitrary positive integer n?



