Prove that the symmetric difference is an associative operation; that is, for any sets \(A, B \) and \(C \), we have \(A \triangle (B \triangle C) = (A \triangle B) \triangle C \).

We are assuming that the three sets \(A, B \) and \(C \) are all subsets of a fixed universal set \(U \). In the proof we use the definition of symmetric difference (see the top of page 69), the distributive law, DeMorgan’s law, and the following fact repeatedly: for any two subsets \(X \) and \(Y \) of \(U \), \(X – Y = X \cap Y^c \). You should verify this yourself. Combining the first and last of these we see that \(X \triangle Y = (X \cap Y^c) \cup (Y \cap X^c) \).

\[
A \triangle (B \triangle C) = (A \cap (B \triangle C)) \cup ((B \triangle C) \cap A)
= (A \cap [(B \cap C^c) \cup (C \cap B^c)]) \cup ((B \cap C^c) \cap A) \cup ((C \cap B^c) \cap A)
= (A \cap (B \cap C^c) \cap (C \cap B^c)) \cup ((B \cap C^c) \cap A) \cup ((C \cap B^c) \cap A)
= A \cap ((B \cap C^c) \cap (C \cap B^c)) \cup ((B \cap C^c) \cap A) \cup ((C \cap B^c) \cap A)
= A \cap [((B \cap C^c) \cup (C \cap B^c)) \cup ((B \cap C^c) \cap A) \cup ((C \cap B^c) \cap A)]
= A \cap [(B \cap C^c) \cup B \cup C \cap B \cup C \cap B^c \cup B \cap C^c \cap A \cup (C \cap B \cap A)]
= A \cap [(B \cap C^c) \cup (C \cap B) \cup (C \cap B \cap A) \cup (C \cap B) \cap A \cup (C \cap B) \cap A]
= (A \cap B \cap C^c) \cup (A \cap C \cap B) \cup (B \cap C \cap A) \cup (C \cap B \cap A)

Similarly, since

\[
X \triangle Y = (X \cap Y^c) \cup (Y \cap X^c) = (Y \cap X^c) \cup (X \cap Y) = Y \triangle X,
\]
we see that

\[
(A \triangle B) \triangle C = C \triangle (A \triangle B)
= (C \cap (A \triangle B)) \cup ((A \triangle B) \cap C)
= (C \cap [(A \cap B^c) \cup (B \cap A^c)]) \cup ((A \cap B^c) \cap C) \cup ((B \cap A^c) \cap C)
= (C \cap (A \cap B^c) \cap (B \cap A^c)) \cup ((A \cap B^c) \cap C) \cup ((B \cap A^c) \cap C)
= C \cap ((A \cup B) \cap (B \cup A)) \cup ((A \cap B) \cap C) \cup ((B \cap A) \cap C)
= C \cap [(A \cap B) \cup (B \cap A)] \cup ((A \cap B) \cap C) \cup ((B \cap A) \cap C)
= C \cap [(A \cap B) \cup (B \cap A)] \cup ((A \cap B) \cap C) \cup ((B \cap A) \cap C)
= (C \cap A \cap B) \cup (C \cap B \cap A) \cup (A \cap B \cap C) \cup (B \cap A \cap C)
Now, since union and intersection are commutative operations on sets, we get that

\[A \triangle (B \triangle C) = (A \cap \overline{B} \cap \overline{C}) \cup (A \cap C \cap B) \cup (B \cap \overline{C} \cap \overline{A}) \cup (C \cap \overline{B} \cap \overline{A}) \]
\[= (C \cap A \cap B) \cup (C \cap B \cap A) \cup (A \cap B \cap C) \cup (B \cap A \cap C) \]
\[= (A \triangle B) \triangle C \]

If you think about this for a moment you can see that the symmetric difference of 3 sets (in any order) is the set consisting of those elements that belong to exactly one of the three sets or to all three sets. Can you give a verbal description of the set of elements that comprise

\[A_1 \triangle A_2 \triangle \cdots \triangle A_n \]

for an arbitrary positive integer \(n \)?