Chapter 1: Fun and Games

Finite Mathematics
Spring 2017

Subtraction Game

- S is a set (collection) of positive integers; for example, $S=\{1\}, S=\{1,2,3\}$ or $S=\{1,3,4\}$.

Subtraction Game

- S is a set (collection) of positive integers; for example, $S=\{1\}, S=\{1,2,3\}$ or $S=\{1,3,4\}$.
- There are two players, Player 1 and Player 2.
- S is a set (collection) of positive integers; for example, $S=\{1\}, S=\{1,2,3\}$ or $S=\{1,3,4\}$.
- There are two players, Player 1 and Player 2.
- There is a pile of n tokens, for some positive integer n.
- S is a set (collection) of positive integers; for example, $S=\{1\}, S=\{1,2,3\}$ or $S=\{1,3,4\}$.
- There are two players, Player 1 and Player 2.
- There is a pile of n tokens, for some positive integer n .
- Player 1 plays first by removing some number of tokens from the pile. She can only remove a number, k, of tokens if k is one of the integers in the set S .
- S is a set (collection) of positive integers; for example, $\mathrm{S}=\{1\}, \mathrm{S}=\{1,2,3\}$ or $\mathrm{S}=\{1,3,4\}$.
- There are two players, Player 1 and Player 2.
- There is a pile of n tokens, for some positive integer n.
- Player 1 plays first by removing some number of tokens from the pile. She can only remove a number, k, of tokens if k is one of the integers in the set S .
- Player 2 plays using the same rules as specified for Player 1 above.
- S is a set (collection) of positive integers; for example, $S=\{1\}, S=\{1,2,3\}$ or $S=\{1,3,4\}$.
- There are two players, Player 1 and Player 2.
- There is a pile of n tokens, for some positive integer n.
- Player 1 plays first by removing some number of tokens from the pile. She can only remove a number, k, of tokens if k is one of the integers in the set S .
- Player 2 plays using the same rules as specified for Player 1 above.
- The players now alternate taking turns removing tokens from the pile.
- S is a set (collection) of positive integers; for example, $S=\{1\}, S=\{1,2,3\}$ or $S=\{1,3,4\}$.
- There are two players, Player 1 and Player 2.
- There is a pile of n tokens, for some positive integer n.
- Player 1 plays first by removing some number of tokens from the pile. She can only remove a number, k, of tokens if k is one of the integers in the set S .
- Player 2 plays using the same rules as specified for Player 1 above.
- The players now alternate taking turns removing tokens from the pile.
- The winner is the last player to remove a token.

Subtraction Game

Play the game and determine a strategy.
(1) $S=\{1,2,3\}$ and

- $\mathrm{n}=4$

Subtraction Game

Play the game and determine a strategy.
(1) $S=\{1,2,3\}$ and

- $\mathrm{n}=4$
- $\mathbf{n}=9$

Play the game and determine a strategy.
(0) $S=\{1,2,3\}$ and

- $\mathrm{n}=4$
- $\mathrm{n}=9$
- Do you want to be Player 1 or Player 2?

Play the game and determine a strategy.

(1) $S=\{1,2,3\}$ and

- $\mathrm{n}=4$
- $\mathrm{n}=9$
- Do you want to be Player 1 or Player 2?
(c) $\mathrm{S}=\{1,3\}$
- $\mathbf{n}=4$

Play the game and determine a strategy.

(0) $S=\{1,2,3\}$ and

- $\mathrm{n}=4$
- $\mathrm{n}=9$
- Do you want to be Player 1 or Player 2?
(c) $\mathrm{S}=\{1,3\}$
- $\mathbf{n}=4$
- $\mathbf{n}=9$

Play the game and determine a strategy.

(0) $\mathrm{S}=\{1,2,3\}$ and

- $\mathrm{n}=4$
- $\mathrm{n}=9$
- Do you want to be Player 1 or Player 2?
(c) $\mathrm{S}=\{1,3\}$
- $\mathrm{n}=4$
- $\mathrm{n}=9$
- Do you want to be Player 1 or Player 2?

Play the game and determine a strategy.

(1) $\mathrm{S}=\{1,2,3\}$ and

- $\mathrm{n}=4$
- $\mathrm{n}=9$
- Do you want to be Player 1 or Player 2?
(2) $\mathrm{S}=\{1,3\}$
- $\mathrm{n}=4$
- $\mathrm{n}=9$
- Do you want to be Player 1 or Player 2?

Can you think of a way to determine the winner and a strategy for that player for any given S and n ?

Analyzing Subtraction Games

ext and revious players

- We can "solve" the Subtraction Game for a given set S of subtraction values by putting each positive integer n into one of two sets, \mathcal{N} or \mathcal{P}.

Analyzing Subtraction Games

ext and revious players

- We can "solve" the Subtraction Game for a given set S of subtraction values by putting each positive integer n into one of two sets, \mathcal{N} or \mathcal{P}.
- \mathcal{N} stands for "Next player wins" and \mathcal{P} stand for "Previous player wins."

Analyzing Subtraction Games

ext and Previous players

- We can "solve" the Subtraction Game for a given set S of subtraction values by putting each positive integer n into one of two sets, \mathcal{N} or \mathcal{P}.
- \mathcal{N} stands for "Next player wins" and \mathcal{P} stand for "Previous player wins."
- In other words, an integer \mathbf{n} will be put into \mathcal{N} if the next player can win the game when confronted with a pile of n tokens.

Analyzing Subtraction Games

ext and Previous players

- We can "solve" the Subtraction Game for a given set S of subtraction values by putting each positive integer n into one of two sets, \mathcal{N} or \mathcal{P}.
- \mathcal{N} stands for "Next player wins" and \mathcal{P} stand for "Previous player wins."
- In other words, an integer \mathbf{n} will be put into \mathcal{N} if the next player can win the game when confronted with a pile of n tokens.
- The integer n will be put into the set \mathcal{P} if the previous player, who made a move that reduced the pile to n tokens, can win the game.

Analyzing Subtraction Games

ext and Previous players

- We can "solve" the Subtraction Game for a given set S of subtraction values by putting each positive integer n into one of two sets, \mathcal{N} or \mathcal{P}.
- \mathcal{N} stands for "Next player wins" and \mathcal{P} stand for "Previous player wins."
- In other words, an integer \mathbf{n} will be put into \mathcal{N} if the next player can win the game when confronted with a pile of n tokens.
- The integer n will be put into the set \mathcal{P} if the previous player, who made a move that reduced the pile to n tokens, can win the game.
- Well, duh??

Analyzing Subtraction Games

ext and Previous players

- We can "solve" the Subtraction Game for a given set S of subtraction values by putting each positive integer n into one of two sets, \mathcal{N} or \mathcal{P}.
- \mathcal{N} stands for "Next player wins" and \mathcal{P} stand for "Previous player wins."
- In other words, an integer n will be put into \mathcal{N} if the next player can win the game when confronted with a pile of n tokens.
- The integer n will be put into the set \mathcal{P} if the previous player, who made a move that reduced the pile to n tokens, can win the game.
- Well, duh??
- The key idea is to make up these sets recursively.

Analyzing Subtraction Games

Example of making N and

Example: $\mathrm{S}=\{\mathbf{1}, \mathbf{2}, \mathbf{5}\}$

Analyzing Subtraction Games

Example of making N and

Example: $\mathrm{S}=\{\mathbf{1}, \mathbf{2}, \mathbf{5}\}$

- Put 1,2 and 5 in \mathcal{N} since the next player can win if confronted with a pile of 1,2 or 5 tokens by simply removing all of them.

Analyzing Subtraction Games

Example of making N and

Example: $\mathrm{S}=\{\mathbf{1}, \mathbf{2}, \mathbf{5}\}$

- Put 1,2 and 5 in \mathcal{N} since the next player can win if confronted with a pile of 1,2 or 5 tokens by simply removing all of them.
- Put 3 into \mathcal{P}. Why?

Analyzing Subtraction Games

Example of making N and

Example: $\mathrm{S}=\{\mathbf{1}, \mathbf{2}, \mathbf{5}\}$

- Put 1,2 and 5 in \mathcal{N} since the next player can win if confronted with a pile of 1,2 or 5 tokens by simply removing all of them.
- Put 3 into \mathcal{P}. Why?
- Put 4 into \mathcal{N}, and then put 6 into \mathcal{P}. Why?

Analyzing Subtraction Games

Example of making N and

Example: $\mathrm{S}=\{\mathbf{1}, \mathbf{2}, \mathbf{5}\}$

- Put 1,2 and 5 in \mathcal{N} since the next player can win if confronted with a pile of 1,2 or 5 tokens by simply removing all of them.
- Put 3 into \mathcal{P}. Why?
- Put 4 into \mathcal{N}, and then put 6 into \mathcal{P}. Why?

Practice this strategy

Example: $\mathrm{S}=\{1,3,4\}$

Analyzing Subtraction Games

Example of making N and

Example: $\mathrm{S}=\{\mathbf{1}, \mathbf{2}, \mathbf{5}\}$

- Put 1,2 and 5 in \mathcal{N} since the next player can win if confronted with a pile of 1,2 or 5 tokens by simply removing all of them.
- Put 3 into \mathcal{P}. Why?
- Put 4 into \mathcal{N}, and then put 6 into \mathcal{P}. Why?

Practice this strategy

Example: $\mathrm{S}=\{1,3,4\}$
Question: Can you do $S=\{1,2,6,9\}$?

Summary

(1) We build the sets \mathcal{N} and \mathcal{P} recursively.
(2) Put 0 and each integer from S in \mathcal{N}.
(3) Consider the smallest positive integer \mathbf{k} that has not been put into either \mathcal{N} or \mathcal{P}.
(4) If there is at least one number in S so that when that many tokens are removed from a pile of \mathbf{k} tokens the number of tokens remaining in the pile is in \mathcal{P}, then put \mathbf{k} into \mathcal{N}.
(5) If the above is not true, then for every number in S when that many tokens are removed from a pile of \mathbf{k} tokens the number of tokens remaining in the pile is in \mathcal{N}. Put \mathbf{k} into \mathcal{P}.
(Repeat starting at step 3 above.

