Pigeonhole Examples

Doug Rall
Mathematics 110
Spring 2017

Statement of PHP

Pigeonhole Principle

Suppose that n and m are positive integers with $\mathbf{m}>\mathbf{n}$. Regardless of how we distribute m objects into n boxes, there will always be a box that contains at least 2 of the objects.

Example

A certain elementary school has 1400 students. Each of them writes the initials of their first and last names on a card.

Example

A certain elementary school has 1400 students. Each of them writes the initials of their first and last names on a card.

For example, Billy Bogart would write BB, and Tamera Carlyle would write TC.

Example

A certain elementary school has 1400 students. Each of them writes the initials of their first and last names on a card.
For example, Billy Bogart would write BB, and Tamera Carlyle would write TC.

At least two of these cards must be the same.

Example

A certain elementary school has 1400 students. Each of them writes the initials of their first and last names on a card.
For example, Billy Bogart would write BB, and Tamera Carlyle would write TC.

At least two of these cards must be the same. Use Pigeonhole Principle

Example

A certain elementary school has 1400 students. Each of them writes the initials of their first and last names on a card.
For example, Billy Bogart would write BB, and Tamera Carlyle would write TC.

At least two of these cards must be the same. Use Pigeonhole Principle

In fact, at least 3 of these cards must be the same!

Example

A certain elementary school has 1400 students. Each of them writes the initials of their first and last names on a card.
For example, Billy Bogart would write BB, and Tamera Carlyle would write TC.

At least two of these cards must be the same. Use Pigeonhole Principle

In fact, at least 3 of these cards must be the same!

Generalized Pigeonhole Principle

Suppose that n and m are positive integers with $\mathbf{m}>\mathbf{n}$.
Regardless of how we distribute m objects into n boxes, there will always be a box that contains at least m / n of the objects.

Examples

Prove that if any set S of 21 numbers is chosen from
$\{1,2,3, \ldots, 40\}$ there will always be two numbers in S whose sum is 41 .

Examples

Prove that if any set S of 21 numbers is chosen from $\{1,2,3, \ldots, 40\}$ there will always be two numbers in S whose sum is 41 .

78, 450 fans attended a Clemson football game one Saturday. The ages of the fans ranged from 6 to 88 inclusive, and their weights (to the nearest pound) ranged from 48 to 315 pounds. Prove there were at least 4 fans in attendance who were the exact same age and had the exact same weight.

- Imagine all the ways that the puzzle piece \mathbf{B} could be placed on this chess board having the same orientation as shown.

- Imagine all the ways that the puzzle piece \mathbf{B} could be placed on this chess board having the same orientation as shown.
- Imagine all the different patterns that are possible if we color each of the five squares in \mathbf{B} either red or gray.

Prove that regardless of how the 64 squares of the 8×8 chess board are colored with red and gray there will always be (at least) two copies of \mathbf{B}, with the given orientation, somewhere on this colored board that have the same color pattern.

A Particular Pattern That Occurs More Than Once

Three occurrences of the indicated pattern. One marked by " x ", another by " y " and a third by " z ".

A Particular Pattern That Occurs More Than Once

Three occurrences of the indicated pattern. One marked by " x ", another by " y " and a third by " z ".

A Particular Pattern That Occurs More Than Once

Three occurrences of the indicated pattern. One marked by " x ", another by " y " and a third by " z ".

A Particular Pattern That Occurs More Than Once

						z	
				z	z	z	z
				y			
		y	y	y	y		
	x	x	x	x			

Three occurrences of the indicated pattern. One marked by " x ", another by " y " and a third by " z ".

A Particular Pattern That Occurs More Than Once

						z	
				z	z	z	z
				y			
		y	y x	y	y		
	x	x	x	x			

Three occurrences of the indicated pattern. One marked by " x ", another by " y " and a third by " z ".

