

Systems of Linear Inequalities

Method

- Graph the boundary line for each inequality
- Test a single point not on the boundary line (how about using (0,0)?) to determine which side of the boundary line (that is, which "half plane") is being described by the inequality
- The desired solution set is the set of points that belong to every one of these half planes

X	\geq	0
у	\leq	3
5x + 6y	\leq	30

Exercise	#4
----------	----

x	\leq	3
У	\geq	-1
2x + 5y	\leq	10

2/1

Doug Rall

Systems of Linear Inequalities

Example

3y	$x + 2x + 12 \geq 0$	
	$\begin{array}{rrrr} x+4 & \geq & \ y+2 & \geq & \end{array}$	
	$y + 2 \geq y - 2 \leq z$	

Exercise #21

A set of points is described by the inequalities

$$x \geq 0$$

$$x \geq y$$

$$x \leq y+2$$

$$3y + x \leq 6$$

Graph this set of points and find the vertices of the polygon that is described by the inequalities.

Systems of Linear Inequalities

Example

4/1

Graph the feasible set, find the corner points, and evaluate the function p at the corner points for the following linear programming problem.

Doug Rall

Minimize

p = x + 2y

subject to

$$y - x \leq 0$$

$$y \geq 0$$

$$3x + 2y \leq 6$$

$$-x + 2y \geq -1$$