Chapter 3, Section 5

Doug Rall
Fall 2014

Outline

Outline

- Definition of Bernoulli Process
- Bernoulli Process Probability

Definition: A Bernoulli trial is an experiment with exactly two possible outcomes. These two outcomes are typically called success (S) and failure (F).

Examples

- A fair coin is tossed resulting in a $\operatorname{Head}(\mathrm{S})$ or Tail(F).
- A multiple choice question (with five possible choices) is answered by random guessing, resulting in a correct(S) or an incorrect (F) answer.
- A place kicker attempts extra points resulting in one point(S) for the team or in zero points(F).

Bernoulli Trials

Definition: In a Bernoulli trial we let $p=\operatorname{Pr}[S]$ and $q=\operatorname{Pr}[F]$. Note that since the only two possible outcomes are S and F, we get

$$
\mathbf{p}+\mathbf{q}=\mathbf{1}
$$

Examples

- A fair coin is tossed resulting in a $\operatorname{Head}(\mathrm{S})$ or Tail(F). $p=\operatorname{Pr}[S]=1 / 2$ and $q=\operatorname{Pr}[F]=1 / 2$.
- A multiple choice question (with five possible choices) on a test is answered by random guessing resulting in a correct(S) or an incorrect (F) answer. $p=\operatorname{Pr}[S]=1 / 5, q=\operatorname{Pr}[F]=4 / 5$
- A place kicker attempts extra points resulting in one point(S) for the team or in zero points(F). Suppose he has made 95\% of extra point attempts in his career so far.
$p=\operatorname{Pr}[S]=.95$ and $q=\operatorname{Pr}[F]=.05$

Bernoulli Process

Definition: A Bernoulli process is a sequence of repetitions of the same Bernoulli trial. The repetitions are independent, and so the probability of success (and of failure) remains the same on each trial.

Examples

- A fair coin is tossed 5 times resulting in a $\operatorname{Head}(S)$ or Tail(F) on each toss. On each toss, $p=\operatorname{Pr}[S]=1 / 2$ and $q=\operatorname{Pr}[F]=1 / 2$.
- A multiple choice test with 10 questions (with five possible choices on each question) is completed by randomly guessing the answer to each question. On each question, $p=\operatorname{Pr}[S]=1 / 5$ and $q=\operatorname{Pr}[F]=4 / 5$.
- A place kicker attempts extra points resulting in one point(S) for the team or in zero points(F). During a game he attempts five extra points.

Bernoulli Process

For a given Bernoulli process that has n trials we would like to be able to answer the following types of questions:

- What is the probability of exactly 3 successes?
- What is the probability of at most 2 failures?
- What is the probability of at least 4 successes?
- What is the probability of no successes?

Bernoulli Process

Example

A box contains 2 red balls and 3 green balls. A trial consists of selecting a ball at random from the box, noting its color, and returning the ball to the box. We will consider getting a red ball a success. Our experiment consists of 4 (independent) trials. Draw and label the probability tree for this experiment and then compute

- the probability of selecting exactly 1 red ball;
- the probability of selecting exactly 2 red balls;
- the probability of selecting no red balls.

See page 129 of text!

Bernoulli Process

Main Result

Theorem: If a Bernoulli process with n trials has

$$
p=\operatorname{Pr}[S] \quad \text { and } \quad q=\operatorname{Pr}[F]
$$

then

$$
\operatorname{Pr}[\text { exactly } k \text { successes in } n \text { trials }]=C(n, k) p^{k} q^{n-k} .
$$

Generic Bernoulli Process

Example

A certain Bernoulli process has 7 trials with $p=\operatorname{Pr}[S]=3 / 4$ and $q=\operatorname{Pr}[F]=1 / 4$. Find

- the probability of exactly 6 successes.
- the probability of exactly 4 failures.
- the probability of at least 5 successes.
- the probability of at most 3 successes.

Bernoulli Process

Example

In a 10-question multiple choice test, in which each question has 4 possible choices, find the probability of answering exactly 8 questions correctly just by guessing.
Find the probability of answering at most 3 questions correctly just by guessing.

Exercise \#8

A basketball player makes each of his shots with probability 0.5. If he takes 6 shots and if the results of his shots are independent, find the probability that he makes at least 4.

Example

A small car rental agency in Utah rents regular sedans and 4-wheel drive vehicles. Data from the past suggests that about 40 percent of those renting a vehicle want one with 4 -wheel drive. On this particular day the agency has lots of sedans but has only two 4 -wheel drive vehicles in their current inventory. A tour group of 10 couples is arriving, and each couple will rent a vehicle. Assume that the preferences of this tour group can be viewed as the result of a Bernoulli process and find the probability that every couple that wants a 4-wheel drive can be accommodated.

