Chapter 3, Section 2

Doug Rall
Fall 2014

Outline

Outline

- Conditional Probability
- Independent Events

Conditional Probability - Using Given Information

Example

A single card is chosen at random from a well-shuffled deck.

- What is the probability the card is a club?
- What is the probability the card is a club if you know the card is a black card?
- What is the probability the card is a club if you know the card is an ace?
- What is the probability the card is a club if you know the card is a heart?

Additional information is important!

conditional Probability

Example

A pair of fair dice, one red and the other green, are rolled.
(1) What is the probability that the sum of the dice is 5 ?
(2) Suppose someone else looks at the dice that have been rolled and reports that the red die is 3 . Knowing that, what is the probability the sum is 5 ?
(3) What is the probability that the sum is 7?
(9) Suppose someone else looks at the dice that have been rolled and reports that the red die is 3 . Knowing that, what is the probability that the sum is 7 ?

Additional information is important!

Conditional Probability

Notation

Let A and B be events in the sample space of an experiment with $\operatorname{Pr}[B] \neq 0$. The conditional probability of event A given B is written as

$$
\operatorname{Pr}[A \mid B]
$$

Definition

$$
\operatorname{Pr}[A \mid B]=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[B]}
$$

Conditional Probability

Example

A pair of fair dice, one red and the other green, are rolled.
(1) Let $A=$ the event that the sum is 5 .

Let $B=$ the event that the red die is 3 .
Let $C=$ the event that the sum is 7 .
(2) Find $\operatorname{Pr}[A]$
(3) Find $\operatorname{Pr}[A \mid B]$
(9) Find $\operatorname{Pr}[B \mid A]$
(5) Find $\operatorname{Pr}[C]$
(0. Find $\operatorname{Pr}[C \mid B]$

Conditional Probability

```
Exercise #2
Suppose E and F are events in a sample space S with
Pr[E] =.48, Pr [F]=.75, and Pr [E\capF]=.32.
Find }\operatorname{Pr}[E|F]\mathrm{ and }\operatorname{Pr}[F|E]\mathrm{ .
```


Exercise \#18

A group of 6 students consists of 4 freshmen and 2 sophomores. Two students are selected simultaneously and at random. Find the probability that both are freshmen given that at least one is a freshman.

Conditional Probability

Exercise

A box contains 3 red poker chips and 4 blue poker chips. Two chips are selected simultaneously and at random.
Let $A=$ the event that both chips selected are red;
Let $B=$ the event that both chips selected are blue;
Let $C=$ the event that 1 chip is red and 1 chip is blue;
Let $D=$ the event that at least 1 chip is red.
Find $\operatorname{Pr}[A], \operatorname{Pr}[B], \operatorname{Pr}[C], \operatorname{Pr}[D], \operatorname{Pr}[A \mid D]$ and $\operatorname{Pr}[C \mid D]$.

Independent Events

Definition

Let A and B be events in the sample space of an experiment with $\operatorname{Pr}[B] \neq 0$. We have seen examples of when

$$
\operatorname{Pr}[\mathbf{A} \mid \mathbf{B}]=\operatorname{Pr}[\mathbf{A}]
$$

and other examples of when

$$
\operatorname{Pr}[\mathbf{A} \mid \mathbf{B}] \neq \operatorname{Pr}[\mathbf{A}]
$$

We say that A and B are independent events if $\operatorname{Pr}[\mathbf{A} \mid \mathbf{B}]=\operatorname{Pr}[\mathbf{A}]$
Note that A and B are independent events if and only if

$$
\operatorname{Pr}[\mathbf{A} \cap \mathbf{B}]=\operatorname{Pr}[\mathbf{A}] \operatorname{Pr}[\mathbf{B}] .
$$

WHY?

Independent Events

Exercise

A pair of fair dice, one red and one green, are rolled.
Let $E=$ the event that the sum of the dice is 6 .
Let $F=$ the event that the sum of the dice is 7 .
Let $G=$ the event that the green die is odd.
Are E and G independent (events)?
Are F and G independent (events)?
Are E and F independent (events)?

Similar to Exercise \#11

Let E and F be events such that $\operatorname{Pr}[E \mid F]=\frac{1}{3}, \operatorname{Pr}[F \mid E]=\frac{2}{5}$, and $\operatorname{Pr}[E \cap F]=\frac{1}{6}$. Are E and F independent?

Independent Events

Exercise

A box contains five balls numbered 1 through 5 . An experiment consists of selecting three balls, in succession and without replacement, and noting the number of each ball selected.
Let $A=$ the event that the ball \#5 is selected second.
Let $B=$ the event that the ball \#1 is selected third.
Let $C=$ the event that the ball \#2 is not selected.
Find $\operatorname{Pr}[A], \operatorname{Pr}[B], \operatorname{Pr}[C]$
Are A and C independent (events)?
Are B and C independent (events)?
Are A and B independent (events)?

