Chapter 3, Section 1

Doug Rall
Fall 2014

Outline

Outline

- General Experiments and Sample Spaces
- Properties of Probability

Probability Measure

A probability measure assigns to each event E of a sample space S a number $\operatorname{Pr}[E]$ that is an indication of the likelihood the outcome of the experiment is in E.

This assignment of probabilities must satisfy the following axioms (assumptions):

- $0 \leq \operatorname{Pr}[A] \leq 1$, for each event A of the sample space S.
- $\operatorname{Pr}[S]=1$
- If E and F are disjoint events in S, then

$$
\operatorname{Pr}[\mathbf{E} \cup \mathbf{F}]=\operatorname{Pr}[\mathbf{E}]+\operatorname{Pr}[\mathbf{F}] .
$$

Properties

Additional properties of a probability measure:
(1) For any $E \subset S, \operatorname{Pr}\left[\mathbf{E}^{\prime}\right]=\mathbf{1}-\operatorname{Pr}[\mathbf{E}]$.
(2) If $E_{1}, E_{2}, \ldots, E_{k}$ are pairwise disjoint events, then

$$
\operatorname{Pr}\left[\mathbf{E}_{\mathbf{1}} \cup \mathbf{E}_{\mathbf{2}} \cup \cdots \cup \mathbf{E}_{\mathbf{k}}\right]=\operatorname{Pr}\left[\mathbf{E}_{\mathbf{1}}\right]+\operatorname{Pr}\left[\mathbf{E}_{\mathbf{2}}\right]+\cdots+\operatorname{Pr}\left[\mathbf{E}_{\mathbf{k}}\right] .
$$

(3) For any events A and B in S,

$$
\operatorname{Pr}[\mathbf{A} \cup \mathbf{B}]=\operatorname{Pr}[\mathbf{A}]+\operatorname{Pr}[\mathbf{B}]-\operatorname{Pr}[\mathbf{A} \cap \mathbf{B}] .
$$

Example

An experiment is to toss a fair coin until either you get a Tail (T) or the coin is tossed 4 times. Draw a tree diagram to help find the sample space S. How many outcomes does this experiment have? How should we assign probability to the individual outcomes?

Exercise

Exercise \#2

Let A and B be events in a sample space S, and assume $\operatorname{Pr}[A]=.45, \operatorname{Pr}[B]=.75$ and $\operatorname{Pr}\left[A^{\prime} \cap B\right]=.35$. Find
(a) $\operatorname{Pr}\left[B^{\prime} \cap A\right]=$
(b) $\operatorname{Pr}[A \cap B]=$
(c) $\operatorname{Pr}\left[A^{\prime} \cap B^{\prime}\right]=$
(d) $\operatorname{Pr}[A \cup B]=$

Example

The sample space for an experiment is $S=\{v, w, x, y, z\}$.
Suppose that

- $\operatorname{Pr}[\{v, x, z\}]=.40$,
- $\operatorname{Pr}[\{x\}]=.12$,
- $\operatorname{Pr}[\{v\}]=\operatorname{Pr}[\{z\}]$ and
- $\operatorname{Pr}[\{w\}]=2 \operatorname{Pr}[\{y\}]$.

Find $\operatorname{Pr}[\{w, y, z\}]$.

Exercise

Exercise \#8

Suppose E, F and G are events in a sample space S, with
$\operatorname{Pr}[E]=.45, \operatorname{Pr}[F]=.5, \operatorname{Pr}[G]=.5, \operatorname{Pr}[E \cap F]=.2$,
$\operatorname{Pr}[E \cap G]=.3, \operatorname{Pr}[F \cap G]=.25$, and $\operatorname{Pr}[E \cap F \cap G]=.05$.
Find
(a) $\operatorname{Pr}\left[E^{\prime} \cap F^{\prime} \cap G\right]=$
(b) $\operatorname{Pr}[E \cup G]=$
(c) $\operatorname{Pr}[E \cup F \cup G]=$

