

A probability measure assigns to each event E of a sample space S a number $\Pr[E]$ that is an indication of the likelihood the outcome of the experiment is in E.

This assignment of probabilities must satisfy the following axioms (assumptions):

• $0 \leq \Pr[A] \leq 1$, for each event A of the sample space S.

•
$$\Pr[S] = 1$$

• If E and F are disjoint events in S, then

 $\mathsf{Pr}[\mathsf{E} \cup \mathsf{F}] = \Pr[\mathsf{E}] + \Pr[\mathsf{F}] \,.$

2/1

Doug Rall

Probability Measures: Axioms and Properties

Properties

Additional properties of a probability measure:

- For any $E \subset S$, $\Pr[\mathbf{E}'] = \mathbf{1} \Pr[\mathbf{E}]$.
- 2 If E_1, E_2, \ldots, E_k are pairwise disjoint events, then

$$\Pr[\mathsf{E}_1 \cup \mathsf{E}_2 \cup \cdots \cup \mathsf{E}_k] = \Pr[\mathsf{E}_1] + \Pr[\mathsf{E}_2] + \cdots + \Pr[\mathsf{E}_k] \,.$$

③ For any events A and B in S,

 $\Pr[\mathbf{A} \cup \mathbf{B}] = \Pr[\mathbf{A}] + \Pr[\mathbf{B}] - \Pr[\mathbf{A} \cap \mathbf{B}].$

An experiment is to toss a fair coin until either you get a Tail (T) or the coin is tossed 4 times. Draw a tree diagram to help find the sample space S. How many outcomes does this experiment have? How should we assign probability to the individual outcomes?

4/1

Doug Rall

Probability Measures: Axioms and Properties

Exercise

Exercise #2

Let A and B be events in a sample space S, and assume Pr[A] = .45, Pr[B] = .75 and $Pr[A' \cap B] = .35$. Find (a) $Pr[B' \cap A] =$ (b) $Pr[A \cap B] =$ (c) $Pr[A' \cap B'] =$

(d)
$$\Pr[A \cup B] =$$

The sample space for an experiment is $S = \{v, w, x, y, z\}$. Suppose that

- $\Pr[\{v, x, z\}] = .40$,
- $\Pr[\{x\}] = .12$,
- $\Pr[\{v\}] = \Pr[\{z\}]$ and
- $\Pr[\{w\}] = 2\Pr[\{y\}].$

Find $\Pr[\{w, y, z\}]$.

6/1

Doug Rall

Probability Measures: Axioms and Properties

Exercise

Exercise #8

Suppose E, F and G are events in a sample space S, with $\Pr[E] = .45$, $\Pr[F] = .5$, $\Pr[G] = .5$, $\Pr[E \cap F] = .2$, $\Pr[E \cap G] = .3$, $\Pr[F \cap G] = .25$, and $\Pr[E \cap F \cap G] = .05$. Find

(a)
$$\Pr[E' \cap F' \cap G] =$$

(b)
$$\Pr[E \cup G] =$$

(c) $\Pr[E \cup F \cup G] =$