Chapter 1, Section 2

Doug Rall
Fall 2014

Outline

Outline

- Venn Diagrams
- Representing Subsets Using Venn Diagrams
- deMorgan's Laws
- Associative \& Distributive Laws
- Partitions
- Number of Elements and Partition Principle

Venn Diagrams

Representing the universal set U and one subset $A \subset U$

U : the region inside the rectangle
A : the region inside the circle

Venn Diagrams

Representing the universal set U and one subset $A \subset U$

U : the region inside the rectangle
A: the region inside the smaller rectangle

Venn Diagrams

Representing the complement of a set

A : the region inside the circle
A^{\prime} : the region that is both outside the circle and inside U

Venn Diagrams

Two subsets A, B in "standard position"

- Shade the subset $A \cup B$
- Shade the subset $A \cap B$
- Shade the subset $A \cap B^{\prime}$
- Shade the subset $B \cup A^{\prime}$

Venn Diagrams

Exercise

- $A=$
- $B=$
- $A \cap B^{\prime}=$
- $B^{\prime} \cup\left(A^{\prime} \cap B\right)=$

Venn Diagrams

Three subsets A, B and C in "standard position"

- Shade the subset $A \cup B$
- Shade the subset $A \cap B \cap C$
- Shade the subset $A \cap B^{\prime} \cap C^{\prime}$
- Shade the subset $\left(B \cap A^{\prime}\right) \cap C$
- Shade the subset $\left(B \cap A^{\prime}\right) \cup C$

DeMorgan's Laws

For a universal set X and $A \subset X, B \subset X$
$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

Associative and Distributive

For a universal set X and $A \subset X, B \subset X$ and $C \subset X$
$(A \cup B) \cup C=A \cup(B \cup C)$
$(A \cap B) \cap C=A \cap(B \cap C)$
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

Partitions

Definition

A list of sets $A_{1}, A_{2}, \ldots, A_{k}$ are pairwise disjoint if every pair of them are disjoint. (that is, every pair of them have empty intersection)

Example

$\{1,3,5\},\{2,4,6\},\{7, a, z\},\{b, c\}$ are pairwise disjoint
$\{1, a, b\},\{2,4\},\{3, b\}$ are not pairwise disjoint even though
$\{1, a, b\} \cap\{2,4\} \cap\{3, b\}=\emptyset$.

Definition

A partition of a set X is a collection of nonempty subsets of X such that

- the subsets are pairwise disjoint, and
- the union of the subsets is X.

Partitions

Examples

- $\{1,3,5,7\},\{2,4\},\{6\}$ is a partition of $\{1,2,3,4,5,6,7\}$
- $\{(1, b)\},\{(2, a),(1, a),(3, b)\},\{(2, b),(3, a)\}$ is a partition of $\{1,2,3\} \times\{a, b\}$.

$A \cap B^{\prime}, A \cap B, A^{\prime} \cap B,(A \cup B)^{\prime}$ is a partition of $\{a, b, c, d, e, w, x, y, z\}$.

Partition Principle

Notation

Let S be a set with a finite number of elements. We denote the number of elements in S by $n(S)$.

Examples

$n(\{a, b, c, d, e, f, g\})=7$
$n(\{x, y\} \times\{7,8,9\})=2 \cdot 3=6$. (General Principle)
$n(\emptyset)=0$
$n(\{1,2,\{4,5\}, 3\})=4$

Partition Principle

If $A_{1}, A_{2}, \ldots, A_{k}$ is a partition of a finite set X, then $n(X)=n\left(A_{1}\right)+n\left(A_{2}\right)+\cdots+n\left(A_{k}\right)$.

Counting Principles

Partition Principle

The sets $A \cap B \cap C$ and $A \cap B^{\prime} \cap C$ and $A \cap B \cap C^{\prime}$ and $A \cap B^{\prime} \cap C^{\prime}$ partition the set A.
By the partition principle, $n(A)=$

Exercises

[\#12] Let U be a universal set with disjoint subsets A and B.
$n(U)=55, n(A)=25$, and $n(B)=10$.
Find $n\left(A^{\prime} \cup B\right)$.
Find $n\left(A^{\prime} \cap B\right)$.
Find $n\left((A \cup B)^{\prime}\right)$.
[\#28] A set X with $n(X)=45$ is partitioned into three subsets X_{1}, X_{2}, and X_{3}. If $n\left(X_{2}\right)=2 n\left(X_{1}\right)$ and $n\left(X_{3}\right)=3 n\left(X_{2}\right)$, find the number of elements in X_{1}.

Exercises

[\#22] Let A, B and C be subsets of a universal set U with A and B disjoint, $n(U)=110, n(A)=35, n(B)=44$, $n(A \cup B \cup C)=96$, and $((A \cup B) \cap C)=28$. Find $n(C)$.

- Draw a Venn diagram representing the given information.
- Fill in any additional information.
- The following 4 subsets partition U :
$A, B, C \cap A^{\prime} \cap B^{\prime}$ and $A^{\prime} \cap B^{\prime} \cap C^{\prime}$

