

Outline

Outline

- Venn Diagrams
- Representing Subsets Using Venn Diagrams
- deMorgan's Laws
- Associative & Distributive Laws
- Partitions
- Number of Elements and Partition Principle

Venn Diagrams

Venn Diagrams

- Shade the subset $A \cup B$
- Shade the subset $A \cap B$
- Shade the subset $A \cap B'$
- Shade the subset $B \cup A'$

Venn Diagrams

Exercise В Α а С b d Χ y е W Ζ • A =• B = • $A \cap B' =$ • $B' \cup (A' \cap B) =$ 6/1Doug Rall Venn Diagrams and Partitions

Venn Diagrams

DeMorgan's Laws

For a universal set X and $A \subset X$, $B \subset X$

 $(A \cup B)' = A' \cap B'$ $(A \cap B)' = A' \cup B'$

Associative and Distributive

For a universal set X and $A \subset X$, $B \subset X$ and $C \subset X$

 $(A \cup B) \cup C = A \cup (B \cup C)$

 $(A \cap B) \cap C = A \cap (B \cap C)$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

8/1

Doug Rall

Venn Diagrams and Partitions

Partitions

Definition

A list of sets A_1, A_2, \ldots, A_k are pairwise disjoint if every pair of them are disjoint. (that is, every pair of them have empty intersection)

Example

 $\{1,3,5\}$, $\{2,4,6\}$, $\{7,a,z\}$, $\{b,c\}$ are pairwise disjoint

 $\{1, a, b\}, \{2, 4\}, \{3, b\}$ are not pairwise disjoint even though $\{1, a, b\} \cap \{2, 4\} \cap \{3, b\} = \emptyset.$

Definition

A partition of a set X is a collection of nonempty subsets of Xsuch that

- the subsets are pairwise disjoint, and
- the union of the subsets is X.

Partitions

Examples

- $\{1,3,5,7\},\{2,4\},\{6\}$ is a partition of $\{1,2,3,4,5,6,7\}$
- {(1, b)}, {(2, a), (1, a), (3, b)}, {(2, b), (3, a)} is a partition of {1, 2, 3} × {a, b}.

10/1

Doug Rall Venn Diagrams and Partitions

Partition Principle

Notation

Let S be a set with a finite number of elements. We denote the number of elements in S by n(S).

Examples

 $n(\{a, b, c, d, e, f, g\}) = 7$ $n(\{x, y\} \times \{7, 8, 9\}) = 2 \cdot 3 = 6.$ (General Principle) $n(\emptyset) = 0$ $n(\{1, 2, \{4, 5\}, 3\}) = 4$

Partition Principle

If A_1, A_2, \ldots, A_k is a partition of a finite set X, then $n(X) = n(A_1) + n(A_2) + \cdots + n(A_k).$

12/1

Doug Rall

II Venn Diagrams and Partitions

Exercises

[#12] Let U be a universal set with disjoint subsets A and B. n(U) = 55, n(A) = 25, and n(B) = 10. Find $n(A' \cup B)$. Find $n(A' \cap B)$. Find $n((A \cup B)')$. [#28] A set X with n(X) = 45 is partitioned into three subsets X_1, X_2 , and X_3 . If $n(X_2) = 2n(X_1)$ and $n(X_3) = 3n(X_2)$, find the number of elements in X_1 .

14/1

Doug Rall

Venn Diagrams and Partitions

Exercises

[#22] Let A, B and C be subsets of a universal set U with A and B disjoint, n(U) = 110, n(A) = 35, n(B) = 44, $n(A \cup B \cup C) = 96$, and $((A \cup B) \cap C) = 28$. Find n(C).

- Draw a Venn diagram representing the given information.
- Fill in any additional information.
- The following 4 subsets partition U: A, B, $C \cap A' \cap B'$ and $A' \cap B' \cap C'$