Chapter 1, Section 1

Doug Rall
Fall 2014

Outline

Outline

- Sets and set notation
- Subsets
- Union
- Intersection
- Universal set
- Cartesian product

Sets and set notation

Definition

A set is a collection of distinct objects. The objects in a set are called its elements.

- We typically use upper case letters (such as A, E, S or X) to denote a set and lower case letters (r, x, y, \ldots) to denote the elements of a set.
- For a generic set X we write $a \in X$ (read " a is an element of $X^{\prime \prime}$) to mean that a is one of the objects in the set X.
- To indicate that a particular object c is not one of the objects in a set A we write $c \notin A$ (read " c is not an element of A ")
- The only important thing about a set is which objects it contains. So, when are two sets equal?

Specifying a set

Two ways to specify a set

(1) For sets with few elements we can list the elements, separated by commas, and enclosed in set brackets, $\}$.

- $A=\{t, u, v, w, x, y, z\}$
- $D=\{2,3,4,5,6,7,8,9,10\}$
(2) Using a rule to describe the elements ("set-builder" notation) that belong to the set.
- $D=\{x: x$ is an integer between 2 and 10 inclusive $\}$ Read "the set of all x such that x is an integer between 2 and 10 inclusive."
- $F=\{s: s$ is a current Furman student $\}$

Subsets

Definition

If R and S are sets, then R is a subset of S if every element in R is also an element in S. We write $R \subset S$ or $R \subseteq S$ to indicate that R is a subset of S. ($\not \subset$ means ...)

Examples

$$
\begin{aligned}
& \{1,3,5,7,9\} \subset\{1,2,3,4,5,6,7,8,9,10\} \\
& \text { Let } A=\{x: x \text { is a Furman student from Utah }\} \\
& \text { and } F=\{s: s \text { is a Furman student }\} \\
& A \subset F \\
& \{1,3,5,7\} \not \subset F \\
& \{1,2,3,4,5,6,7,8,9,10\} \not \subset\{1,3,5,7,9\} \\
& \mathrm{T} / \mathrm{F}: \quad\{1,2,3,4\} \subset\{1,2,3,4\} .
\end{aligned}
$$

Sets and Subsets

Examples

Let $X=\{a, b, c, d, e, f, g, h, x, y, z\}$
(1) T/F: $b \in X$ True
(2) $T / F: 11 \in X$ False
(3) T/F: $\{a, c, z\} \subset X$ True
(9) T/F: $\{x, y, z\} \in X$ False
(6) T/F: $d \subset X$ False

Union of Sets

Definition

Let R and S be sets. The union of R and S is a set, denoted by $R \cup S$, and defined by

$$
R \cup S=\{z \mid z \in R \text { or } z \in S\} .
$$

Examples

[Ex \#4] Let $E=\{2, t, y\}$ and $F=\{1,2, u, x, y\}$.

- $E \cup F=\{2, t, y, 1, u, x\}=\{1,2, t, u, x, y\}$
- $F \cup F=F$

Intersection of Sets

Definition

Let R and S be sets. The intersection of R and S is a set, denoted by $R \cap S$, and defined by

$$
R \cap S=\{z \mid z \in R \text { and } z \in S\}
$$

Examples

[Ex \#4] Let $E=\{2, t, y\}$ and $F=\{1,2, u, x, y\}$.

- $E \cap F=\{2, y\}$
- $F \cap F=F$
- T/F: If A and B are any sets, then $A \subset(A \cup B)$. True
- T/F: If A and B are any sets, then $A \subset(A \cap B)$. False
- T/F: If A and B are any sets, then $(A \cap B) \subset A$. True

Empty Set and Universal Set

Definition

(1) The empty set is a set that contains no elements. The empty set is denoted by \emptyset.

- $\{a, b, c, d\} \cap\{1,2,3, x, y, z\}=\emptyset$
- $F=$ the set of all current Furman students.
$A=$ the set of all current Furman students from Iceland.
Is $A=\emptyset$?
(2) Two sets R and S are called disjoint if $R \cap S=\emptyset$.

Definition

In a typical problem all the objects (elements) being considered belong to one large set X. Such a set X is called the universal set for that problem. If $E \subset X$, then the complement of E is the set $E^{\prime}=\{a \in X \mid a \notin E\}$.

- Let $X=\{1,2,3,4,5,6,7,8,9,10\}$ be universal set.
$\{1,3,5\}^{\prime}=\{2,4,6,7,8,9,10\}$

Problems

- If R and S are subsets of a universal set U, how would you use set notation to write the set of all elements that belong to R but not to S ?
- How would you write the set of all elements that belong to R or to S but not to both?
$\# 10 U=\{x, y, z, 1,2,3\}, A=\{y, z, 2\}, B=\{y, 1,2\}, C=\{x, 3\}$
(a) $A \cup B=$
(b) $B \cap C=$
(c) $(A \cup B) \cap(B \cup C)=$
(d) $\left(B \cap A^{\prime}\right) \cap C^{\prime}=$
(e) $(B \cup C)^{\prime} \cap A=$

Cartesian Product

Definition

If R and S are sets, then the Cartesian product of R and S is the set denoted by $R \times S$ and defined by $R \times S=\{(a, b) \mid a \in R$ and $b \in S\}$.

Examples

Let $A=\{3,6\}$ and $B=\{r, s, t\}$.
$A \times B=$
$B \times A=$
$A \times A=$
Do there exist sets E and F such that
$E \times F=\{(a, 1),(a, 3),(b, 1),(a, 2),(b, 3)\} ?$

