Topics in Graph Theory Graphs and Their Cartesian Product

Corrections and Improvements

* The subject index entry "uniquely distinguishable, 146 " should not be a subentry of "undominated."
* page 175 , line 6: "Let P a shortest path" should be "Let P be a shortest path"
* page 106, Proposition 13.2: The proof can be considerably shortened from that given in the book.

The following paragraphs contain the statement of the proposition and a new, shorter proof. The notation is compatible with that of Figures 13.1 and 13.2.

For this proof we introduce the notation G-edge for the edges that are in G-fibers and H-edge for those in H-fibers.

Proposition 13.2 A connected subgraph W of $G \square H$ is a box of $G \square H$ if and only if for any two adjacent edges e and f of W that are in different fibers, the unique square of $G \square H$ that contains e and f is also in W.

Proof. Every connected box W satisfies the conditions of the proposition, even if it is a subgraph of a fiber.

Conversely, let the condition of the proposition be satisfied. Consider two vertices $u=\left(u_{1}, u_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ in W and a u, y-path P in W. We show first that there exists a u, y-path Q in W where the H-edges precede the G-edges.

Suppose there are two successive edges e and f^{\prime} in P, where $e=$ $(g, h)\left(g^{\prime}, h\right)$ is a G-edge and $f^{\prime}=\left(g^{\prime}, h\right)\left(g^{\prime}, h^{\prime}\right)$ an H-edge. If we replace e by $e^{\prime}=(g, h)\left(g, h^{\prime}\right)$ and f^{\prime} by $f=\left(g, h^{\prime}\right)\left(g^{\prime}, h^{\prime}\right)$ we obtain another
u, y-path, say P^{\prime}, which is also in W since e, f^{\prime} are in different fibers. Continuing in this way we end with a u, y-path $Q \subseteq W$ in which the H-edges precede the G-edges.
This implies that $\left(u_{1}, y_{2}\right) \in V(W)$. Similarly one shows that $\left(y_{1}, u_{2}\right) \in$ $V(W)$, and hence $V(W)=p_{G}(V(W)) \times p_{H}(V(W))$. If W is induced, say if it is convex, then we are through.
Otherwise, suppose there is an edge e such that $p_{G}(e) \in p_{G}(W)$, but $e \notin W$. By the above there is an $f \in W$ with $p_{G}(f)=p_{G}(e)$. Set $e=x y$ and $f=w z$ with $p_{G} w=p_{G} x$. Then there is a path Q^{\prime} of H-edges from w to x. If the path has length one, then an application of the square property shows that $e \in W$, otherwise we use induction with respect to the length of Q^{\prime}.
Similarly one treats the case $p_{H}(e) \in p_{H}(W)$, but $e \notin W$.

