Topics in Graph Theory Graphs and Their Cartesian Product

Corrections and Improvements

- * The subject index entry "uniquely distinguishable, 146" should not be a subentry of "undominated."
- * page 175, line 6: "Let P a shortest path" should be "Let P be a shortest path"
- * page 106, Proposition 13.2: The proof can be considerably shortened from that given in the book.

The following paragraphs contain the statement of the proposition and a new, shorter proof. The notation is compatible with that of Figures 13.1 and 13.2.

For this proof we introduce the notation G-edge for the edges that are in G-fibers and H-edge for those in H-fibers.

Proposition 13.2 A connected subgraph W of $G \Box H$ is a box of $G \Box H$ if and only if for any two adjacent edges e and f of W that are in different fibers, the unique square of $G \Box H$ that contains e and f is also in W.

Proof. Every connected box W satisfies the conditions of the proposition, even if it is a subgraph of a fiber.

Conversely, let the condition of the proposition be satisfied. Consider two vertices $u = (u_1, u_2)$ and $y = (y_1, y_2)$ in W and a u, y-path P in W. We show first that there exists a u, y-path Q in W where the H-edges precede the G-edges.

Suppose there are two successive edges e and f' in P, where e = (g,h)(g',h) is a G-edge and f' = (g',h)(g',h') an H-edge. If we replace e by e' = (g,h)(g,h') and f' by f = (g,h')(g',h') we obtain another

u,y-path, say P', which is also in W since e, f' are in different fibers. Continuing in this way we end with a u,y-path $Q \subseteq W$ in which the H-edges precede the G-edges.

This implies that $(u_1, y_2) \in V(W)$. Similarly one shows that $(y_1, u_2) \in V(W)$, and hence $V(W) = p_G(V(W)) \times p_H(V(W))$. If W is induced, say if it is convex, then we are through.

Otherwise, suppose there is an edge e such that $p_G(e) \in p_G(W)$, but $e \notin W$. By the above there is an $f \in W$ with $p_G(f) = p_G(e)$. Set e = xy and f = wz with $p_Gw = p_Gx$. Then there is a path Q' of H-edges from w to x. If the path has length one, then an application of the square property shows that $e \in W$, otherwise we use induction with respect to the length of Q'.

Similarly one treats the case $p_H(e) \in p_H(W)$, but $e \notin W$.

Page updated: February 3, 2010